The Guanpo pegmatite field in the North Qinling orogenic belt(NQB),China,hosts the most abundant LCT pegmatites.However,their emplacement conditions and structural control remain unexplored.In this contribution,we inv...The Guanpo pegmatite field in the North Qinling orogenic belt(NQB),China,hosts the most abundant LCT pegmatites.However,their emplacement conditions and structural control remain unexplored.In this contribution,we investigated it combining pegmatite orientation measurement with oxygen isotope geothermometry and fluid inclusion study.The orientations of type A1 pegmatites(P_(f)<σ_(2))are predominantly influenced by P-and T-fractures due to simple shearing in Shiziping dextral thrust shear zone during D_(2)deformation,whereas type A2 pegmatites(contemporaneous with D_(4))are governed by hydraulic fractures aligned with S_(0)and S_(0+1)stemming from fluid pressure(P_(f)<σ_(2)).Additionally,type B pegmatites(P_(f)≤σ_(2))exhibit orientations shaped by en echelon extensional fractures in local ductile shear zones(contemporaneous with D_(3)).The albite-quartz oxygen isotope geothermometry and microthermometric analysis of fluid inclusions in elbaites from the latest pegmatites(including types B and A2)suggest that the crystallization P-T for late magmatic and hydrothermal stages are 527.5-559.2℃,320℃,3.1-3.6 kbar and 2.0 kbar,respectively.Our observations along with previous studies suggest that the genesis of the LCT pegmatites was a long-term,multi-stage event during early Paleozoic orogeny(including the collision stage)of the NQB,and was facilitated by various local fractures.展开更多
The tectonic evolution and crustal accretion process of the North Qilian Orogenic Belt(NQOB)are still under debate because of a lack of integrated constraints,especially the identifi cation of the tectonic transition ...The tectonic evolution and crustal accretion process of the North Qilian Orogenic Belt(NQOB)are still under debate because of a lack of integrated constraints,especially the identifi cation of the tectonic transition from arc to initial collision.Here we present results from zircon U-Pb geochronology,whole-rock geochemistry,and Sr-Nd-Pb isotope geochemistry of the Beidaban granites to provide crucial information for geodynamic evolution of NQOB.Zircon U-Pb dating yields an age of 468±10 Ma for the Beidaban granites and most of the Beidaban samples contain amphibole,are potassium-rich,and have A/CNK values ranging from 0.7 to 0.9,illustrating that the Middle Ordovician Beidaban granites are K-rich,metaluminous,calc-alkaline granitoid.The geochemical characteristics indicate that the Beidaban granites are transitional I/S-type granitoids that formed in an arc setting.The isotopic compositions of initial(87 Sr/86 Sr)i values ranging from 0.70545 to 0.71082(0.70842 on average)andεNd(t)values ranging from−10.9 to−6.7(−8.8 on average)with two-stage Nd model ages(T DM2)of 1.74-2.08 Ga suggest that the Beidaban granites originated from Paleoproterozoic crustal materials.In addition,the initial Pb isotopic compositions(^(206)Pb/^(204)Pb=19.14-20.26;^(207)Pb/^(204)Pb=15.71-15.77;^(208)Pb/^(204)Pb=37.70-38.26)and geochemical features,such as high Th/Ta(17.43-30.12)and Rb/Nb(6.01-15.49)values,suggest that the Beidaban granite magma source involved recycled crustal components with igneous rocks.Based on these results in combination with previously published geochronological and geochemical data from other early Paleozoic igneous rocks,we suggest that the timing of the tectonic transition from arc to the initial collision to the fi nal closure of the North Qilian Ocean can be constrained to the Middle-Late Ordovician(ca.468–450 Ma).展开更多
Geodynamic mechanism responsible for the generation of Silurian granitoids and the tectonic evolution of the Qilian orogenic belt remains controversial. In this study, we report the results of zircon U–Pb age, and sy...Geodynamic mechanism responsible for the generation of Silurian granitoids and the tectonic evolution of the Qilian orogenic belt remains controversial. In this study, we report the results of zircon U–Pb age, and systematic whole-rock geochemical data for the Haoquangou and Liujiaxia granitoids within the North Qilian orogenic belt and the Qilian Block, respectively, to constrain their petrogenesis, and the Silurian tectonic evolution of the Qilian orogenic belt. Zircon U–Pb ages indicate that the Haoquangou and Liujiaxia intrusions were emplaced at423 ± 3 Ma and 432 ± 4 Ma, respectively. The Haoquangou granodiorites are calc-alkaline, while the Liujiaxia granites belong to the high-K calc-alkaline series.Both are peraluminous in composition and have relatively depleted Nd isotopic [ε_(Nd)(t) =(-3.9 – + 0.6)] characteristics compared with regional basement rocks, implying their derivation from a juvenile lower crust. They show adakitic geochemical characteristics and were generated by partial melting of thickened lower continental crust. Postcollisional extensional regime related to lithospheric delamination was the most likely geodynamic mechanism for the generation of the Haoquangou granodiorite, while the Liujiaxia granites were generated in a compressive setting during continental collision between the Qaidam and Qilian blocks.展开更多
Post-collisional magmatism contains important clues for understanding the reworking and growth of continental crust,as well as lithospheric delamination and orogenic collapse.Early Devonian magmatism has been identifi...Post-collisional magmatism contains important clues for understanding the reworking and growth of continental crust,as well as lithospheric delamination and orogenic collapse.Early Devonian magmatism has been identified in the North Qilian Orogenic Belt(NQOB).This paper reports an integrated study of petrology,whole-rock geochemistry,Sm-Nd isotope and zircon U-Pb dating,as well as Lu-Hf isotopic data,for two Early Devonian intrusive plutons.The Yongchang and Chijin granites yield zircon U-Pb ages of 394-407 Ma and 414 Ma,respectively.Both of them are characterized by weakly peraluminous to metaluminous without typical aluminium-rich minerals,LREE-enriched patterns with negative Eu anomalies and a negative correlation between P_(2)O_(5) and SiO_(2) contents,consistent with geochemical features of I-type granitoids.Zircons from the studied granites display negative to weak positive ε_(Hf)(t)values(−5.7 to 2.1),which agree well with those of negative ε_(Nd)(t)values(−6.4 to−2.9)for the whole-rock samples,indicating that they were derived from the partial melting of Mesoproterozoic crust.Furthermore,low Sr/Y ratios(1.13-21.28)and high zircon saturation temperatures(745℃ to 839℃,with the majority being>800℃)demonstrated a relatively shallow depth level below the garnet stability field and an additional heat source.Taken together,the Early Devonian granitic magmatism could have been produced by the partial melting of ancient crustal materials heated by mantle-derived magmas at high-temperature and low-pressure conditions during postcollisional extensional collapse.The data obtained in this study,when viewed in conjunction with previous studies,provides more information about the tectonic processes that followed the closure of the North Qilian Ocean.The tectonic transition from continental collision to post-collisional delamination could be constrained to~430 Ma,which is provided by the sudden decrease of Sr/Y and La/Yb ratios and an increase in zircon ε_(Hf)(t)values for granitoids.A two-stage tectonic evolution model from continental collision to post-collisional extensional collapse for the NQOB includes(a)continental collision and crustal thickening during ca.455-430 Ma,characterized by granulite-facies metamorphism and widespread low-Mg adakitic magmatism;(b)post-collisional delamination of thickened continental crust and extensional collapse of orogen during ca.430-390 Ma,provided by coeval high-Mg adakitic magmatism,A-type granites and I-type granitoids with low Sr-Y ratios.展开更多
The North Qinling Orogenic Belt(NQOB)is a composite orogenic belt in central China.It started evolving during the Meso-Neoproterozoic period and underwent multiple stages of plate subduction and collision before enter...The North Qinling Orogenic Belt(NQOB)is a composite orogenic belt in central China.It started evolving during the Meso-Neoproterozoic period and underwent multiple stages of plate subduction and collision before entering intra-continental orogeny in the Late Triassic.The Meso-Cenozoic intra-continental orogeny and tectonic evolution had different responses in various terranes of the belt,with the tectonic evolution of the middle part of the belt being particularly controversial.The granites distributed in the Dayu and Kuyu areas in the middle part of the NQOB can provide an important window for revealing the geodynamic mechanisms of the NQOB.The main lithology of Dayu and Kuyu granites is biotite monzogranite,and the zircon U-Pb dating yielded intrusive ages of 151.3±3.4 Ma and 147.7±1.5 Ma,respectively.The dates suggest that the biotite monzogranite were formed at the end of the Late Jurassic.The whole-rock geochemistry analysis shows that the granites in the study areas are characterized by slightly high SiO_(2)(64.50-68.88 wt%)and high Al_(2)O_(3)(15.12-16.24 wt%)and Na_(2)O(3.55-3.80 wt%)contents.They are also enriched in light rare earth elements,large ion lithophile elements(e.g.,Ba,K,La,Pb and Sr),and depleted in high field strength elements(HFSEs)(e.g.,Ta,Nb,P and Ti).Additionally,the granites have weakly negative-slightly positive Eu anomalies(δEu=0.91-1.19).Zircon Lu-Hf isotopic analysis showedε_(Hf)(t)=-6.1--3.8,and the two-stage model age is T_(2DM(crust))=1.5-1.6 Ga.The granites in the study areas are analyzed as weak peraluminous high-K calc-alkaline I-type granites.They formed by partial melting of the thickened ancient lower crust,accompanied by the addition of minor mantle-derived materials.During magma ascent,they experienced fractional crystallization,with residual garnet and amphibole for a certain proportion in the magma source region.Comprehensive the geotectonic data suggest that the end of the Late Jurassic granite magmatism in the Dayu and Kuyu areas represents a compression-extension transition regime.It may have been a response to multiple tectonic mechanisms,such as the late Mesozoic intra-continental southward subduction of the North China Craton and the remote effect of the Paleo-Pacific Plate subduction.展开更多
As one of the important Paleo-Tethys suture zones in eastern Tibet,the Jinshajiang orogenic belt is of great significance to study the tectonic evolution of the main suture zone of Paleo-Tethys.In this paper,eclogites...As one of the important Paleo-Tethys suture zones in eastern Tibet,the Jinshajiang orogenic belt is of great significance to study the tectonic evolution of the main suture zone of Paleo-Tethys.In this paper,eclogites developed in the Jinshajiang suture zone in Gonjo area,eastern Tibet,are selected as specific research objects,and petrological,geochemical and Ar-Ar geochronological analyses are carried out.The major element data of the whole rock reveals that the eclogite samples have the characteristics of picritic basalt-basalt and belong to the oceanic low potassium tholeiites.The results of rare earth elements and trace elements of the samples show that the protoliths of eclogites have characteristics similar to oceanic island basalt(OIB)or normal mid ocean ridge basalt(N-MORB).Muscovite(phengite)from two eclogite samples yield the Ar-Ar plateau ages of 247±2 Ma and 248±2 Ma respectively,representing the peak metamorphic age of eclogite facies and the timing of complete closure of the Jinshajiang Paleo-Tethys Ocean.Muscovite and biotite selected from the hosting rocks of eclogite yield the Ar-Ar plateau ages are 238±2 Ma and 225±2 Ma respectively,reflecting the exhumation age of eclogites and their hosting rocks.Combined with the zircon U-Pb dating data(244 Ma)of eclogites obtained in previous work,it can be concluded that the Jinshajiang Paleo-Tethys ocean was completely closed and arc-continent collision was initiated at about 248-244 Ma(T21).Subsequently,due to the large-scale arc(continent)-collision orogeney between Deqin-Weixi continental margin arc and Zhongza block(T31-T32),the eclogites were rapidly uplifted to the shallow crust.展开更多
A great number of magmatic Cu-Ni deposits(including Kalatongke in Xinjiang and Hongqiling in Jilin) are distributed over a distance of almost 3000 km across the Tianshan-Xingmeng Orogenic Belt, from Tianshan Mountains...A great number of magmatic Cu-Ni deposits(including Kalatongke in Xinjiang and Hongqiling in Jilin) are distributed over a distance of almost 3000 km across the Tianshan-Xingmeng Orogenic Belt, from Tianshan Mountains in Xinjiang in the west, to Jilin in eastern China in the east. These deposits were formed during a range of magmatic episodes from the Devonian to the Triassic. Significant magmatic Cu-Ni-Co-PGE deposits were formed from the Devonian period in the Nalati arc(e.g. Jingbulake Cu-Ni in Xinjiang), Carboniferous period in the Puerjin-Ertai arc(e.g. Kalatongke Cu-Ni-Co-PGE in Xinjiang), Carboniferous period in the Dananhu-Touquan arc(e.g. Huangshandong, Xiangshan and Tulaergen in estern Tianshan, Xinjiang) to Triassic period in the Hulan arc(e.g. Hongqiling Cu-Ni in Jilin). In addition to the overall tectonic, geologic and distribution of magmatic Cu-Ni deposits in the Tianshan-Xingmeng Orogenic Belt, the metallogenic setting, deposit geology and mineralization characteristics of each deposit mentioned above are summarized in this paper. Geochronologic data of Cu-Ni deposits indicate that, from west to east, the metallogenic ages in the Tianshan-Xingmeng Orogenic Belt changed with time, namely, from the Late Caledonian(~440 Ma), through the Late Hercynian(300-265 Ma) to the Late Indosinian(225-200 Ma). Such variation could reflect a gradual scissor type closure of the paleo Asian ocean between the Siberia Craton and the North China Craton from west to east.展开更多
The Xingmeng Orogenic Belt evolved through a long-lived orogeny involving multiple episodes of subduction and accretion.However,there is a debate on its tectonic evolution during the Late Paleozoic.Here,we report geoc...The Xingmeng Orogenic Belt evolved through a long-lived orogeny involving multiple episodes of subduction and accretion.However,there is a debate on its tectonic evolution during the Late Paleozoic.Here,we report geochemical,geochronological,and isotopic data from strongly peraluminous granites and gabbro-diorites from the Sunidzuoqi-Xilinhot region.Zircon U-Pb ages suggest that the intrusive rocks were emplaced during the Early Carboniferous(333-322 Ma).The granites exhibit geochemical characteristics similar to S-type granites,with high SiO_(2)(72.34-76.53 wt.%),Al_(2)O_(3)(12.45-14.65 wt.%),and A/CNK(1.07-1.16),but depleted Sr,Nb,and Ta contents.They exhibit positiveε_(Nd)(t)andε_(Hf)(t)values(-0.3 to 2.8 and 2.7-5.7,respectively)and young Nd and Hf model ages(T_(DM2)(Nd)=853-1110 Ma and T_(DM2)(Hf)=975-1184 Ma),suggesting that they may be the partial melting products of heterogeneous sources with variable proportions of pelite,psammite,and metabasaltic rocks.The meta-gabbro-diorites from the Maihantaolegai pluton have low SiO_(2)(47.06-53.49 wt.%)and K_2O(0.04-0.99 wt.%)contents,and demonstrate slight light rare earth element(REE)depletion in the chondritenormalized REE diagrams.They have high zirconε_(Hf)(t)values(14.41-17.34)and young Hf model ages(T_(DM2)(Hf)=230-418 Ma),indicating a more depleted mantle source.The variations of the Sm/Yb and La/Sm ratios can thus be used to assess the melting degree of the mantle source from 5%to 20%,suggesting a quite shallow mantle melting zone.We propose that the petrogenesis and distribution of the strongly peraluminous granites and gabbro-diorites,as well as the tectonic architecture of the region,can be explained by a ridge subduction model.Based on these results,and previous studies,we suggest a southward ridge subduction model for the Sunidzuoqi-Xilinhot region.展开更多
The East Kunlun Orogenic Belt(EKOB)in northeast margin of the Qinghai-Tibetan Plateau is an important part of the Central Orogenic System(COS).During the long-time geological evolution,complicated tectono
The early Paleozoic tectonic framework and evolutionary history of the eastern Central Asian Orogenic Belt(CAOB)is poorly understood.Here we present zircon U-Pb geochronology,whole rock geochemistry,and Sr-NdHf isotop...The early Paleozoic tectonic framework and evolutionary history of the eastern Central Asian Orogenic Belt(CAOB)is poorly understood.Here we present zircon U-Pb geochronology,whole rock geochemistry,and Sr-NdHf isotope data of the early Paleozoic granitoids in eastern CAOB to investigate the petrogenesis and geodynamic implications.The early Paleozoic granitoids from the Songnen Block yield zircon U-Pb ages of 523-490 Ma,negative εNd(t)values of-6.7 to-0.8,and values of-8.6 to 7.1,indicating they were generated by partial melting of ancient crustal materials with various degrees of mantle contribution.They generally show affinities to A-type granites,implying their generation from an extensional environment after the collision between the Songnen and Jiamusi blocks.In comparison,the early Paleozoic granitoids from the Xing’an Block have zircon U-Pb ages of 480-465 Ma,εNd(t)values of-5.4 to 5.4,andεHf(t)values of-2.2 to 12.9,indicating a dominated juvenile crustal source with some input of ancient crustal components.They belong to I-type granites and were likely related to subduction of the Paleo-Asian Ocean.The statistics of TDM2 Hf model ages of the granitoids indicate that the Erguna and Jiamusi blocks contain a significant proportion of Mesoproterozoic crystalline basement,while the Xing’an Block is dominated by a Neoproterozoic basement.Based on these observations,the early Paleozoic evolutionary history of eastern GAOB can be divided into four stages:(1)before 540 Ma,the Erguna,Xing’an,Songnen,and Jiamusi blocks were discrete microcontinents separated by different branches of the Paleo-Asian Ocean;(2)540-523 Ma,the Jiamusi Block collided with the Songnen Block along the Mudanjiang suture;(3)ca.500 Ma,the Erguna Block accreted onto the Xing’an Block along the Xinlin-Xiguitu suture;(4)ca.480 Ma,the Paleo-Asian Ocean started a double-side subduction beneath the united Erguna-Xing’an and Songnen-Jiamusi blocks.展开更多
The Changning Menglian belt is an important area of research on the evolution of the Paleo Tethys ocean structure,the belt can be solved such as the Changning Menglianbeltposition;sequencestratigraphy;sedimentary envi...The Changning Menglian belt is an important area of research on the evolution of the Paleo Tethys ocean structure,the belt can be solved such as the Changning Menglianbeltposition;sequencestratigraphy;sedimentary environment;nature and its tectonic evolution history and tectonic domain and Gut Tis relationship;therefore,the research on Chang Ning Menglian zone have a great significance to solve many problems of the Sanjiang fold belt in Tethys and Himalaya tectonic area.'Hot spring'is located in the west margin of the southern Changning Menglian belt,studying Yunnan Fengqing hot spring group'geological and petrology characteristics roundly and in depth,concluding the metamorphism and deformation characteristics,clarifying the metamorphism effect and its stages,understanding the association its combination with the Changning Menglian belt between,therefore it has the great significance to solve the geological evolution history in the Sanjiang area,especially the paleo Tethyan tectonic belt,as well as Gondwana and Eurasia boundaries and other major problem.Through collect and read the literature data,measurement of field section,geological investigation,research and Study on rock sheet indoor,rock composition test,electron probe testing system,summarize the geological characteristics and petrological characteristics of'hot springs group',and through the discussion of the geochemical characteristics of rocks,explore its rock assemblages,characteristics of original rock and analysis of metamorphism and deformation stages,to provide basic data for regional geological evolution.The study shows that the main lithology is biotite quartz schist,mica schist and epimetamorphic sandstone interspersed with a small amount of phyllonite,granulite,silicalite,carbonaceous slate and phyllitic cataclasite that contains some pressure breccia.The metamorphic mineral paragenetic assemblage of the representative rock is:M1 biotite(Bi)+plagioclase(Pl)+quartz(Q),and M2 muscovite(Mus)+quartz(Q).The protolith is felsic rock and sedimentary rock that belongs to argiloid.On the basis of comparison,the stratigraphic sequence of the protolith is consistent with the type section of Wenquan formation.Along with the subduction(Hercynian)-subduction(Indosinian)-orogenic(Yanshan Himalayan period)process of Changning Menglian belt,hot springs group experienced two stages of metamorphism and three stages of deformation,metamorphic temperature at400-500℃,the pressure is foucs on 0.3-0.62Gpa,and shown the retrograde metamorphism of the low greenschist facies.Geological age of hot springs formation is early Devonian(survey team of Yunnan District three units,1980),sedimentary environment is mainly shallow and semi deep sea,observed Bouma sequence in rock slice,therefore,the depositional environment may be fan or basin of sea,the sedimentary formations are mainly clastic rocksiliceous rock formation,the upper coal—contained formation.With the Changning Meng Lian ocean expansion,ocean island begin to develop,material deposition continuing,appearing volcano material,the protolith may contain volcano matter through studying the thin section.To the Late Permian,Crust of Changning Menglian ocean begin to subduct to the east of the Yangtze block,ocean basin began to close,but it still has formation here at this time,mainly shallow carbonate formation,with proceeding of subduction,in the low temperature groove(7Km deep),due to changes in temperature and pressurer,appearing metamorphism(M1)and deformation(D1)for the first time,the shear effect produced by deformation lead to some cleavage,occurring regional foliation S1,major metamorphic minerals formed in metamorphism is long flake biotite.The main metamorphic mineral assemblages are biotite(Bi)+feldspar(Pl)+quartz(Q).Subsequently,crustal uplift,depositional break,because the Changning Meng Lianyang has closed during the Indosinian period,Baoshan-Zhenkang block in the west and the Yangtze block in the east knocked each other.In the Indosinian,under the action of faults,the hot spring formation clipping and retracing,back to a position about1-2Km depth,the position is still belongs to the low temperature groove,and occurring axial cleavage in the core of the fold,namely S2.That is,the emergence of the second metamorphism(M2)and deformation(D2).The deformation is affected by the strong pressure,so the rock have dewatered,so the second metamorphic deformation process is affected by temperature(T),pressure(Ps)and fluid(C).The main metamorphic minerals in the second generation of metamorphism is Muscovite,while there have some of biotite formed in same period,find that the first phase of biotite parallel growth of rock slice,namely S1 parallel S2,and we can see incomplete metamorphism biotite,so the the Muscovite is formed by the first stage of metamorphism and metamorphic biotite.The main mineral of the second stage metamorphism is Muscovite(Mus)+quartz(Q) Then,the crust continues to rise,the sedimentary break continues.In the Jurassic Cretaceous start orogeny,namely Yanshan period intracontinental orogeny,occurred third deformation(D3),under extrusion shearing,S3 emergencing,after Yanshan intracontinental orogenic period,in Himalayan period there have large-scale nappe structure and differential uplift and faulting.So the third deformation(D3)strengthened,with weak metamorphism,sericite emergencing.展开更多
The West Kunlun orogenic belt(WKOB) along the northern margin of the Tibetan Plateau is important for understanding the evolution of the Proto-and Paleo-Tethys oceans. Previous investigations have focused on the igneo...The West Kunlun orogenic belt(WKOB) along the northern margin of the Tibetan Plateau is important for understanding the evolution of the Proto-and Paleo-Tethys oceans. Previous investigations have focused on the igneous rocks and ophiolites distributed mostly along the Xinjiang-Tibet road and the China-Pakistan road, and have constructed a preliminary tectonic model for this orogenic belt. However, few studies have focused on the so-called Precambrian basement in this area. As a result, the tectonic affinity of the individual terranes of the WKOB and their detailed evolution process are uncertain. Here we report new field observations, zircon and monazite U-Pb ages of the "Precambrian basement" of the South Kunlun terrane(SKT) and the Tianshuihai terrane(TSHT), two major terranes in the WKOB. Based on new zircon U-Pb age data, the amphibolite-facies metamorphosed volcanosedimentary sequence within SKT was deposited during the late Neoproterozoic to Cambrian(600-500 Ma), and the flysch-affinity Tianshuihai Group, as the basement of the TSHT, was deposited during the late Neoproterozoic rather than Mesoproterozoic. The rock association of the volcano-sedimentary sequence within SKT suggests a large early Paleozoic accretionary wedge formed by the long-term lowangle southward subduction of the Proto-Tethys Ocean between Tarim and TSHT. The amphibolitefacies metamorphism in SKT occurred at ca. 440 Ma. This ca. 440 Ma metamorphism is genetically related to the closure of the Proto-Tethys Ocean between Tarim and the Tianshuihai terrane, which led to the assembly of Tarim to Eastern Gondwana and the final formation of the Gondwana. Since the late Paleozoic to early Mesozoic, the northward subduction of the Paleo-Tethys Ocean along the HongshihuQiaoertianshan belt produced the voluminous early Mesozoic arc-signature granites along the southern part of NKT-TSHT. The Paleo-Tethys ocean between TSHT and Karakorum closed at ca. 200 Ma, as demonstrated by the monazite age of the paragneiss in the Kangxiwa Group. Our study does not favor the existence of a Precambrian basement in SKT.展开更多
This paper emphasizes that the interactive constraints of geology and isotopic dating is the best approach to construct the geological event sequence, and has compiled 106 data of reasonable isotopic ages for the igne...This paper emphasizes that the interactive constraints of geology and isotopic dating is the best approach to construct the geological event sequence, and has compiled 106 data of reasonable isotopic ages for the igneous rocks of the Yanshan belt. We propose a sequence of mgmatic-tectonic events in the Jurassic-Cretaceous Yanshan orogen of North China. Five orogenic episodes are divided, (1) pre-and initial orogenic episode (Early Jurassic); (2) early orogenic episode (Middle Jurassic); (3) peak orogenic episode (Late Jurassic); (4) late orogenic episode (early Early Cretaceous), and (5) post-orogenic episode. Each episode is a short cycle, all of the orogenic processes construct a longer cycle, and they, in general, followed a counter-clockwise (ccw) PTt path. Finally, it is suggested that the Yanshanian movement was so intensive that the magmatism and tectonic deformation had involved all the lithosphere thickness and the late-Achaean-formed cratonic lithosphere had been significantly reworked.展开更多
The main types of intrusive rocks in the Kelameili-Harlik Hercynian orogenic belt include calc-alkaline granites, diabase dykes, kaligranites and alkaline granites. Investigation in field geology, petrology, mineralog...The main types of intrusive rocks in the Kelameili-Harlik Hercynian orogenic belt include calc-alkaline granites, diabase dykes, kaligranites and alkaline granites. Investigation in field geology, petrology, mineralogy and geochemistry shows that the calc-alkaline granites belong to the syntexis-type (or I-type) and were formed in a pre-collisional magmatic arc environment. In consideration of the fact that kaligranites have many features of alkaline granites with higher consolidation temperatures than the calc-alkaline granites and show a discontinuity of minor element and REE evolution in respect to the calc-alkaline granites, they could not have been derived by differentiation of magmas for the calc-alkaline granites, but are likely to have been generated in an environment analogous to that for alkaline granites. The triplet of basic dyke swarms, kaligranites and alkaline granites could be regarded as a prominent indication of the initial stage of post-collisional delamination and extension. These rocks might have originated from underplating and intraplating of mantle-derived magmas at varying levels with varying degrees of partial melting, mixing, and interchange of crustal and mantle materials展开更多
In a re-study of regional geology by the China Geological Survey (CGS), the key problem is in the stratigraphical division and correlation. According to the new isotopic dating of the Mesoand Neoproterozoic in China...In a re-study of regional geology by the China Geological Survey (CGS), the key problem is in the stratigraphical division and correlation. According to the new isotopic dating of the Mesoand Neoproterozoic in China, there have been great changes in the strata correlation and tectonic explanation. The authors obtained four zircon sensitive high resolution ion micro-probe (SHRIMP) U- Pb datings from the bentonite of the Lengjiaxi Group (822±10 Ma, 823±12 Ma and 834±11 Ma) and Banxi Group (802.6±7.6 Ma) in north Hunan Province, which is considered to be the middle part of the Jiangnan Orogenic Belt. On the basis of the zircon dating mentioned above, the end of the Wuling orogen is first limited in the period from 822 Ma to 802 Ma in one continued outcrop (Lucheng section) in Linxiang city, Hunan Province. Combining a series of new zircon U-Pb datings in the Yangtze and Cathaysia blocks, several Neoproterozoic volcanic events and distribution of the metamorphic rocks in the Jiangnan Orogenic Belt have been distinguished. In the context of the global geodynamics, it is useful to set up a practical and high precision chronological framework and basic and unified late Precambrian section in South China.展开更多
Laser ablation–inductively coupled plasma–mass spectrometry(LA–ICP–MS) was used to determine the trace element concentrations of magnetite from the Heifengshan, Shuangfengshan, and Shaquanzi Fe(–Cu) deposits ...Laser ablation–inductively coupled plasma–mass spectrometry(LA–ICP–MS) was used to determine the trace element concentrations of magnetite from the Heifengshan, Shuangfengshan, and Shaquanzi Fe(–Cu) deposits in the Eastern Tianshan Orogenic Belt. The magnetite from these deposits typically contains detectable Mg, Al, Ti, V, Cr, Mn, Co, Ni, Zn and Ga. The trace element contents in magnetite generally vary less than one order of magnitude. The subtle variations of trace element concentrations within a magnetite grain and between the magnetite grains in the same sample probably indicate local inhomogeneity of ore–forming fluids. The variations of Co in magnetite between samples are probably due to the mineral proportion of magnetite and pyrite. Factor analysis has discriminated three types of magnetite: Ni–Mn–V–Ti(Factor 1), Mg–Al–Zn(Factor 2), and Ga– Co(Factor 3) magnetite. Magnetite from the Heifengshan and Shuangfengshan Fe deposits has similar normalized trace element spider patterns and cannot be discriminated according to these factors. However, magnetite from the Shaquanzi Fe–Cu deposit has affinity to Factor 2 with lower Mg and Al but higher Zn concentrations, indicating that the ore–forming fluids responsible for the Fe–Cu deposit are different from those for Fe deposits. Chemical composition of magnetite indicates that magnetite from these Fe(–Cu) deposits was formed by hydrothermal processes rather than magmatic differentiation. The formation of these Fe(–Cu) deposits may be related to felsic magmatism.展开更多
The Lajishan orogenic belt is one of the E-W-trending Caledonian orogenicbelts within the Qinling-Qilian orogenic system. It was formed upon the Jiningian basement byintensive taphrogenesis. Its major characteristics ...The Lajishan orogenic belt is one of the E-W-trending Caledonian orogenicbelts within the Qinling-Qilian orogenic system. It was formed upon the Jiningian basement byintensive taphrogenesis. Its major characteristics comprise the prominent faulting along the northand south boundaries, the highly complicated petrological and petro-geochemical features of thevolcanic rock series, and the development of a new type of ophiolite suite. In terms of tectonicanalysis and the sequential analysis of tectonic settings of magmatic rocks, it is suggested thatthe Lajishan orogenic belt has undergone a complete 'opening-closing' cycle, which can be furtherdivided into 3 second-order 'opening-closing' cycles. The composite characteristics of the'opening-closing' movement show that Laji Mountain is a typical fault orogenic belt. The faultorogenic belt is one of the most important types of intracontinental orogens. It is of criticaltheoretical and practical significance to summarize the characteristics and the diagnostic criteriaof this kind of orogenic belts, and study the mechanism of their formation and build models of theirevolution.展开更多
The Drillhole ZK703 with a depth of 558 m is located in the Donghai area of the southern Sulu ultrahigh-pressure (UHP) metamorphic belt, eastern China, and penetrates typical UHP eclogites and various non-mafic rocks,...The Drillhole ZK703 with a depth of 558 m is located in the Donghai area of the southern Sulu ultrahigh-pressure (UHP) metamorphic belt, eastern China, and penetrates typical UHP eclogites and various non-mafic rocks, including peridotite, gneiss, schist and quartzite. Their protoliths include ultramafic, mafic, intermediate, intermediate-acidic, acidic igneous rocks and sediments. These rocks are intimately interlayered, which are meters to millimeters thick with sharp and nontectonic contacts, suggesting in-situ metamorphism under UHP eclogite facies conditions. The following petrologic features indicate that the non-mafic rocks have experienced early-stage UHP metamorphism together with the eclogites: (1) phengite relics in gneisses and schists contain a high content of Si, up to 3.52 p.f.u. (per formula unit), while amphibolite-facies phengites have considerably low Si content (<3.26 p.f.u.); (2) jadeite relics are found in quartzite and jadeitite; (3) various types of symplectitic coronas and pseud展开更多
The superlarge Baguamiao, large Liba and Xiaogouli gold deposits represent three typical gold deposits different from the Carlin type in the western Qinling Orogenic Belt. Based on Ar-Ar dating of quartz from ores, U-...The superlarge Baguamiao, large Liba and Xiaogouli gold deposits represent three typical gold deposits different from the Carlin type in the western Qinling Orogenic Belt. Based on Ar-Ar dating of quartz from ores, U-Pb dating of single zircon from granite, tracing of H and O isotopes and studies on the mineralogy and texture of spots and bleached alteration developed in wall rocks, this paper focuses the relations between gold deposits and granite to clarify the origin of gold deposits and the metallogenesis in the tectonic evolution of the Qinling Orogenic Belt. The comprehensive studies show that the age of the granite (148.1-244 Ma) is identical with that of the gold deposits (131.91-232.56 Ma). It is suggested that the granite has close temporal, spatial and genetic relationship with the gold deposits. The granite provides a heat source, water source and considerable amount of ore-forming material. Finally, it is concluded that the orogeny by collision, emplacement of the granite and positioning of the gold deposits represent a successive process. Both the granite and gold deposits resulted from the syn-orogeny and post-orogeny tectonic evolution.展开更多
The Qushi’ang granodiorite(QSG) is located at the central east of the ophiolitic melange belt in the East Kunlun Orogenic Belt(EKOB) in the northern margin of the Qinghai-Tibetan Plateau. LA-MC-ICP-MS zircon U–P...The Qushi’ang granodiorite(QSG) is located at the central east of the ophiolitic melange belt in the East Kunlun Orogenic Belt(EKOB) in the northern margin of the Qinghai-Tibetan Plateau. LA-MC-ICP-MS zircon U–Pb dating suggests that the granodiorite and mafic microgranular enclaves(MMEs) crystallized 246.61±0.62 and 245.45±0.9 Ma ago, respectively. Granodiorite, porphyritic diorite, and MMEs are metaluminous and medium-K calk-alkaline series, with island-arc magma features, such as LILE enrichment and HFSE depletion. The porphyritic diorite has high Cr(13.50 ppm to 59.01 ppm), Ni(228.53 ppm to 261.29 ppm), and Mg~#(46–54). Granodiorite and porphyritic diorite have similar mineral compositions and evolved major and trace elements contents, particularly Cr and Ni, both of which are significantly higher than that in granites of the same period. The crystallization age of MMEs is close to that of granodiorite, and their major and trace elements contents are in-between porphyritic diorite and granodiorite. The results suggest that the original mafic magma, which was the product of mantle melting by subduction process, intruded into the lower crust(Kuhai Rock Group), resulting in the formation of granodiorite. Countinous intrusion of mafic magma into the unconsolidated granodiorite formed MMEs and porphyritic diorite. The granodiorite reformed by late-stage strike-slip faulting tectonic event indicates that the strike-slip fault of Middle Kunlun and the collision of the Bayanhar block with East Kunlun were later than 246 Ma. Therefore, the formation of the QSG not only indicates the critical period of evolution of East Kunlun but also represents the tectonic transition from oceanic crust subduction to slab breaking.展开更多
基金supported by the National Key R&D Program of China(Grant Nos.2021YFC2901902 and 2019YFC0605202)。
文摘The Guanpo pegmatite field in the North Qinling orogenic belt(NQB),China,hosts the most abundant LCT pegmatites.However,their emplacement conditions and structural control remain unexplored.In this contribution,we investigated it combining pegmatite orientation measurement with oxygen isotope geothermometry and fluid inclusion study.The orientations of type A1 pegmatites(P_(f)<σ_(2))are predominantly influenced by P-and T-fractures due to simple shearing in Shiziping dextral thrust shear zone during D_(2)deformation,whereas type A2 pegmatites(contemporaneous with D_(4))are governed by hydraulic fractures aligned with S_(0)and S_(0+1)stemming from fluid pressure(P_(f)<σ_(2)).Additionally,type B pegmatites(P_(f)≤σ_(2))exhibit orientations shaped by en echelon extensional fractures in local ductile shear zones(contemporaneous with D_(3)).The albite-quartz oxygen isotope geothermometry and microthermometric analysis of fluid inclusions in elbaites from the latest pegmatites(including types B and A2)suggest that the crystallization P-T for late magmatic and hydrothermal stages are 527.5-559.2℃,320℃,3.1-3.6 kbar and 2.0 kbar,respectively.Our observations along with previous studies suggest that the genesis of the LCT pegmatites was a long-term,multi-stage event during early Paleozoic orogeny(including the collision stage)of the NQB,and was facilitated by various local fractures.
基金This study was fi nancially supported by the Youth Science and Technology Talent Recruitment Project of Gansu Province(2022-19)Technological Innovation Project of Gansu Provincial Department of Natural Resources(2022-3,2022-4,2022-28)+2 种基金National Natural Science Foundation of China(Nos.42073059 and 42303034)Outstanding Youth Fund of Anhui Provincial Department of Education(No.2022AH020084)Doctoral Startup Foundation of Suzhou University(2021BSK038)。
文摘The tectonic evolution and crustal accretion process of the North Qilian Orogenic Belt(NQOB)are still under debate because of a lack of integrated constraints,especially the identifi cation of the tectonic transition from arc to initial collision.Here we present results from zircon U-Pb geochronology,whole-rock geochemistry,and Sr-Nd-Pb isotope geochemistry of the Beidaban granites to provide crucial information for geodynamic evolution of NQOB.Zircon U-Pb dating yields an age of 468±10 Ma for the Beidaban granites and most of the Beidaban samples contain amphibole,are potassium-rich,and have A/CNK values ranging from 0.7 to 0.9,illustrating that the Middle Ordovician Beidaban granites are K-rich,metaluminous,calc-alkaline granitoid.The geochemical characteristics indicate that the Beidaban granites are transitional I/S-type granitoids that formed in an arc setting.The isotopic compositions of initial(87 Sr/86 Sr)i values ranging from 0.70545 to 0.71082(0.70842 on average)andεNd(t)values ranging from−10.9 to−6.7(−8.8 on average)with two-stage Nd model ages(T DM2)of 1.74-2.08 Ga suggest that the Beidaban granites originated from Paleoproterozoic crustal materials.In addition,the initial Pb isotopic compositions(^(206)Pb/^(204)Pb=19.14-20.26;^(207)Pb/^(204)Pb=15.71-15.77;^(208)Pb/^(204)Pb=37.70-38.26)and geochemical features,such as high Th/Ta(17.43-30.12)and Rb/Nb(6.01-15.49)values,suggest that the Beidaban granite magma source involved recycled crustal components with igneous rocks.Based on these results in combination with previously published geochronological and geochemical data from other early Paleozoic igneous rocks,we suggest that the timing of the tectonic transition from arc to the initial collision to the fi nal closure of the North Qilian Ocean can be constrained to the Middle-Late Ordovician(ca.468–450 Ma).
基金funded by Gansu Provincial Natural Science Foundation (Grant Numbers 21JR7RA503 and22JR5RA819)the Fundamental Research Funds for the Central Universities (Grant lzujbky-2021-ct07)+1 种基金the Key Talent Project of Gansu Province (2022-Yangzhenxi)the National Second Expedition to the Tibetan Plateau (2019QZKK0704)。
文摘Geodynamic mechanism responsible for the generation of Silurian granitoids and the tectonic evolution of the Qilian orogenic belt remains controversial. In this study, we report the results of zircon U–Pb age, and systematic whole-rock geochemical data for the Haoquangou and Liujiaxia granitoids within the North Qilian orogenic belt and the Qilian Block, respectively, to constrain their petrogenesis, and the Silurian tectonic evolution of the Qilian orogenic belt. Zircon U–Pb ages indicate that the Haoquangou and Liujiaxia intrusions were emplaced at423 ± 3 Ma and 432 ± 4 Ma, respectively. The Haoquangou granodiorites are calc-alkaline, while the Liujiaxia granites belong to the high-K calc-alkaline series.Both are peraluminous in composition and have relatively depleted Nd isotopic [ε_(Nd)(t) =(-3.9 – + 0.6)] characteristics compared with regional basement rocks, implying their derivation from a juvenile lower crust. They show adakitic geochemical characteristics and were generated by partial melting of thickened lower continental crust. Postcollisional extensional regime related to lithospheric delamination was the most likely geodynamic mechanism for the generation of the Haoquangou granodiorite, while the Liujiaxia granites were generated in a compressive setting during continental collision between the Qaidam and Qilian blocks.
基金supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2022QD055)the Taishan Scholars(Grant No.tstp 20231214)the National Natural Science Foundation of China(Grant No.42372247).
文摘Post-collisional magmatism contains important clues for understanding the reworking and growth of continental crust,as well as lithospheric delamination and orogenic collapse.Early Devonian magmatism has been identified in the North Qilian Orogenic Belt(NQOB).This paper reports an integrated study of petrology,whole-rock geochemistry,Sm-Nd isotope and zircon U-Pb dating,as well as Lu-Hf isotopic data,for two Early Devonian intrusive plutons.The Yongchang and Chijin granites yield zircon U-Pb ages of 394-407 Ma and 414 Ma,respectively.Both of them are characterized by weakly peraluminous to metaluminous without typical aluminium-rich minerals,LREE-enriched patterns with negative Eu anomalies and a negative correlation between P_(2)O_(5) and SiO_(2) contents,consistent with geochemical features of I-type granitoids.Zircons from the studied granites display negative to weak positive ε_(Hf)(t)values(−5.7 to 2.1),which agree well with those of negative ε_(Nd)(t)values(−6.4 to−2.9)for the whole-rock samples,indicating that they were derived from the partial melting of Mesoproterozoic crust.Furthermore,low Sr/Y ratios(1.13-21.28)and high zircon saturation temperatures(745℃ to 839℃,with the majority being>800℃)demonstrated a relatively shallow depth level below the garnet stability field and an additional heat source.Taken together,the Early Devonian granitic magmatism could have been produced by the partial melting of ancient crustal materials heated by mantle-derived magmas at high-temperature and low-pressure conditions during postcollisional extensional collapse.The data obtained in this study,when viewed in conjunction with previous studies,provides more information about the tectonic processes that followed the closure of the North Qilian Ocean.The tectonic transition from continental collision to post-collisional delamination could be constrained to~430 Ma,which is provided by the sudden decrease of Sr/Y and La/Yb ratios and an increase in zircon ε_(Hf)(t)values for granitoids.A two-stage tectonic evolution model from continental collision to post-collisional extensional collapse for the NQOB includes(a)continental collision and crustal thickening during ca.455-430 Ma,characterized by granulite-facies metamorphism and widespread low-Mg adakitic magmatism;(b)post-collisional delamination of thickened continental crust and extensional collapse of orogen during ca.430-390 Ma,provided by coeval high-Mg adakitic magmatism,A-type granites and I-type granitoids with low Sr-Y ratios.
基金substantially supported by the National Nature Science Foundation of China(Grant No.41872220)。
文摘The North Qinling Orogenic Belt(NQOB)is a composite orogenic belt in central China.It started evolving during the Meso-Neoproterozoic period and underwent multiple stages of plate subduction and collision before entering intra-continental orogeny in the Late Triassic.The Meso-Cenozoic intra-continental orogeny and tectonic evolution had different responses in various terranes of the belt,with the tectonic evolution of the middle part of the belt being particularly controversial.The granites distributed in the Dayu and Kuyu areas in the middle part of the NQOB can provide an important window for revealing the geodynamic mechanisms of the NQOB.The main lithology of Dayu and Kuyu granites is biotite monzogranite,and the zircon U-Pb dating yielded intrusive ages of 151.3±3.4 Ma and 147.7±1.5 Ma,respectively.The dates suggest that the biotite monzogranite were formed at the end of the Late Jurassic.The whole-rock geochemistry analysis shows that the granites in the study areas are characterized by slightly high SiO_(2)(64.50-68.88 wt%)and high Al_(2)O_(3)(15.12-16.24 wt%)and Na_(2)O(3.55-3.80 wt%)contents.They are also enriched in light rare earth elements,large ion lithophile elements(e.g.,Ba,K,La,Pb and Sr),and depleted in high field strength elements(HFSEs)(e.g.,Ta,Nb,P and Ti).Additionally,the granites have weakly negative-slightly positive Eu anomalies(δEu=0.91-1.19).Zircon Lu-Hf isotopic analysis showedε_(Hf)(t)=-6.1--3.8,and the two-stage model age is T_(2DM(crust))=1.5-1.6 Ga.The granites in the study areas are analyzed as weak peraluminous high-K calc-alkaline I-type granites.They formed by partial melting of the thickened ancient lower crust,accompanied by the addition of minor mantle-derived materials.During magma ascent,they experienced fractional crystallization,with residual garnet and amphibole for a certain proportion in the magma source region.Comprehensive the geotectonic data suggest that the end of the Late Jurassic granite magmatism in the Dayu and Kuyu areas represents a compression-extension transition regime.It may have been a response to multiple tectonic mechanisms,such as the late Mesozoic intra-continental southward subduction of the North China Craton and the remote effect of the Paleo-Pacific Plate subduction.
基金funded by two Second Tibetan Plateau Comprehensive Scientific Investigation and Research Projects(2019QZKK0702,2019QZKK0706)a project of National Natural Science Foundation of China(42230311)two geological survey projects of China Geological Survey(DD20221635,DD20221811).
文摘As one of the important Paleo-Tethys suture zones in eastern Tibet,the Jinshajiang orogenic belt is of great significance to study the tectonic evolution of the main suture zone of Paleo-Tethys.In this paper,eclogites developed in the Jinshajiang suture zone in Gonjo area,eastern Tibet,are selected as specific research objects,and petrological,geochemical and Ar-Ar geochronological analyses are carried out.The major element data of the whole rock reveals that the eclogite samples have the characteristics of picritic basalt-basalt and belong to the oceanic low potassium tholeiites.The results of rare earth elements and trace elements of the samples show that the protoliths of eclogites have characteristics similar to oceanic island basalt(OIB)or normal mid ocean ridge basalt(N-MORB).Muscovite(phengite)from two eclogite samples yield the Ar-Ar plateau ages of 247±2 Ma and 248±2 Ma respectively,representing the peak metamorphic age of eclogite facies and the timing of complete closure of the Jinshajiang Paleo-Tethys Ocean.Muscovite and biotite selected from the hosting rocks of eclogite yield the Ar-Ar plateau ages are 238±2 Ma and 225±2 Ma respectively,reflecting the exhumation age of eclogites and their hosting rocks.Combined with the zircon U-Pb dating data(244 Ma)of eclogites obtained in previous work,it can be concluded that the Jinshajiang Paleo-Tethys ocean was completely closed and arc-continent collision was initiated at about 248-244 Ma(T21).Subsequently,due to the large-scale arc(continent)-collision orogeney between Deqin-Weixi continental margin arc and Zhongza block(T31-T32),the eclogites were rapidly uplifted to the shallow crust.
基金financially supported by funds of the National Key R&D Program of China (Grant Nos. 2018YFC0604004 and 2017YFC0601206)
文摘A great number of magmatic Cu-Ni deposits(including Kalatongke in Xinjiang and Hongqiling in Jilin) are distributed over a distance of almost 3000 km across the Tianshan-Xingmeng Orogenic Belt, from Tianshan Mountains in Xinjiang in the west, to Jilin in eastern China in the east. These deposits were formed during a range of magmatic episodes from the Devonian to the Triassic. Significant magmatic Cu-Ni-Co-PGE deposits were formed from the Devonian period in the Nalati arc(e.g. Jingbulake Cu-Ni in Xinjiang), Carboniferous period in the Puerjin-Ertai arc(e.g. Kalatongke Cu-Ni-Co-PGE in Xinjiang), Carboniferous period in the Dananhu-Touquan arc(e.g. Huangshandong, Xiangshan and Tulaergen in estern Tianshan, Xinjiang) to Triassic period in the Hulan arc(e.g. Hongqiling Cu-Ni in Jilin). In addition to the overall tectonic, geologic and distribution of magmatic Cu-Ni deposits in the Tianshan-Xingmeng Orogenic Belt, the metallogenic setting, deposit geology and mineralization characteristics of each deposit mentioned above are summarized in this paper. Geochronologic data of Cu-Ni deposits indicate that, from west to east, the metallogenic ages in the Tianshan-Xingmeng Orogenic Belt changed with time, namely, from the Late Caledonian(~440 Ma), through the Late Hercynian(300-265 Ma) to the Late Indosinian(225-200 Ma). Such variation could reflect a gradual scissor type closure of the paleo Asian ocean between the Siberia Craton and the North China Craton from west to east.
基金financially supported by the National Natural Science Foundation of China(Grant No.41702054)supported by the Research Funds for the Central Universities(Changfeng-Liu,2652018281)。
文摘The Xingmeng Orogenic Belt evolved through a long-lived orogeny involving multiple episodes of subduction and accretion.However,there is a debate on its tectonic evolution during the Late Paleozoic.Here,we report geochemical,geochronological,and isotopic data from strongly peraluminous granites and gabbro-diorites from the Sunidzuoqi-Xilinhot region.Zircon U-Pb ages suggest that the intrusive rocks were emplaced during the Early Carboniferous(333-322 Ma).The granites exhibit geochemical characteristics similar to S-type granites,with high SiO_(2)(72.34-76.53 wt.%),Al_(2)O_(3)(12.45-14.65 wt.%),and A/CNK(1.07-1.16),but depleted Sr,Nb,and Ta contents.They exhibit positiveε_(Nd)(t)andε_(Hf)(t)values(-0.3 to 2.8 and 2.7-5.7,respectively)and young Nd and Hf model ages(T_(DM2)(Nd)=853-1110 Ma and T_(DM2)(Hf)=975-1184 Ma),suggesting that they may be the partial melting products of heterogeneous sources with variable proportions of pelite,psammite,and metabasaltic rocks.The meta-gabbro-diorites from the Maihantaolegai pluton have low SiO_(2)(47.06-53.49 wt.%)and K_2O(0.04-0.99 wt.%)contents,and demonstrate slight light rare earth element(REE)depletion in the chondritenormalized REE diagrams.They have high zirconε_(Hf)(t)values(14.41-17.34)and young Hf model ages(T_(DM2)(Hf)=230-418 Ma),indicating a more depleted mantle source.The variations of the Sm/Yb and La/Sm ratios can thus be used to assess the melting degree of the mantle source from 5%to 20%,suggesting a quite shallow mantle melting zone.We propose that the petrogenesis and distribution of the strongly peraluminous granites and gabbro-diorites,as well as the tectonic architecture of the region,can be explained by a ridge subduction model.Based on these results,and previous studies,we suggest a southward ridge subduction model for the Sunidzuoqi-Xilinhot region.
基金supported by the National Science Foundation of China (Grant No., 41472191, 41502191, 41172186, 40972136)the Special Fund for Basic Scientific Research of Central Colleages, Chang’an University (Grant Nos. 310827161002, 310827161006)+1 种基金the Commonweal Geological Surveythe Aluminum Corporation of China and the Land-Resources Department of Qinghai Province (Grant No., 200801)
文摘The East Kunlun Orogenic Belt(EKOB)in northeast margin of the Qinghai-Tibetan Plateau is an important part of the Central Orogenic System(COS).During the long-time geological evolution,complicated tectono
基金financially supported by the geological exploration fund of the Land and Resources Department in Heilongjiang Province(Grant No.201601)the Natural Science Foundation of China(Grant No.41602070)the Fundamental Research Funds for the Central Universities,China University of Geosciences。
文摘The early Paleozoic tectonic framework and evolutionary history of the eastern Central Asian Orogenic Belt(CAOB)is poorly understood.Here we present zircon U-Pb geochronology,whole rock geochemistry,and Sr-NdHf isotope data of the early Paleozoic granitoids in eastern CAOB to investigate the petrogenesis and geodynamic implications.The early Paleozoic granitoids from the Songnen Block yield zircon U-Pb ages of 523-490 Ma,negative εNd(t)values of-6.7 to-0.8,and values of-8.6 to 7.1,indicating they were generated by partial melting of ancient crustal materials with various degrees of mantle contribution.They generally show affinities to A-type granites,implying their generation from an extensional environment after the collision between the Songnen and Jiamusi blocks.In comparison,the early Paleozoic granitoids from the Xing’an Block have zircon U-Pb ages of 480-465 Ma,εNd(t)values of-5.4 to 5.4,andεHf(t)values of-2.2 to 12.9,indicating a dominated juvenile crustal source with some input of ancient crustal components.They belong to I-type granites and were likely related to subduction of the Paleo-Asian Ocean.The statistics of TDM2 Hf model ages of the granitoids indicate that the Erguna and Jiamusi blocks contain a significant proportion of Mesoproterozoic crystalline basement,while the Xing’an Block is dominated by a Neoproterozoic basement.Based on these observations,the early Paleozoic evolutionary history of eastern GAOB can be divided into four stages:(1)before 540 Ma,the Erguna,Xing’an,Songnen,and Jiamusi blocks were discrete microcontinents separated by different branches of the Paleo-Asian Ocean;(2)540-523 Ma,the Jiamusi Block collided with the Songnen Block along the Mudanjiang suture;(3)ca.500 Ma,the Erguna Block accreted onto the Xing’an Block along the Xinlin-Xiguitu suture;(4)ca.480 Ma,the Paleo-Asian Ocean started a double-side subduction beneath the united Erguna-Xing’an and Songnen-Jiamusi blocks.
文摘The Changning Menglian belt is an important area of research on the evolution of the Paleo Tethys ocean structure,the belt can be solved such as the Changning Menglianbeltposition;sequencestratigraphy;sedimentary environment;nature and its tectonic evolution history and tectonic domain and Gut Tis relationship;therefore,the research on Chang Ning Menglian zone have a great significance to solve many problems of the Sanjiang fold belt in Tethys and Himalaya tectonic area.'Hot spring'is located in the west margin of the southern Changning Menglian belt,studying Yunnan Fengqing hot spring group'geological and petrology characteristics roundly and in depth,concluding the metamorphism and deformation characteristics,clarifying the metamorphism effect and its stages,understanding the association its combination with the Changning Menglian belt between,therefore it has the great significance to solve the geological evolution history in the Sanjiang area,especially the paleo Tethyan tectonic belt,as well as Gondwana and Eurasia boundaries and other major problem.Through collect and read the literature data,measurement of field section,geological investigation,research and Study on rock sheet indoor,rock composition test,electron probe testing system,summarize the geological characteristics and petrological characteristics of'hot springs group',and through the discussion of the geochemical characteristics of rocks,explore its rock assemblages,characteristics of original rock and analysis of metamorphism and deformation stages,to provide basic data for regional geological evolution.The study shows that the main lithology is biotite quartz schist,mica schist and epimetamorphic sandstone interspersed with a small amount of phyllonite,granulite,silicalite,carbonaceous slate and phyllitic cataclasite that contains some pressure breccia.The metamorphic mineral paragenetic assemblage of the representative rock is:M1 biotite(Bi)+plagioclase(Pl)+quartz(Q),and M2 muscovite(Mus)+quartz(Q).The protolith is felsic rock and sedimentary rock that belongs to argiloid.On the basis of comparison,the stratigraphic sequence of the protolith is consistent with the type section of Wenquan formation.Along with the subduction(Hercynian)-subduction(Indosinian)-orogenic(Yanshan Himalayan period)process of Changning Menglian belt,hot springs group experienced two stages of metamorphism and three stages of deformation,metamorphic temperature at400-500℃,the pressure is foucs on 0.3-0.62Gpa,and shown the retrograde metamorphism of the low greenschist facies.Geological age of hot springs formation is early Devonian(survey team of Yunnan District three units,1980),sedimentary environment is mainly shallow and semi deep sea,observed Bouma sequence in rock slice,therefore,the depositional environment may be fan or basin of sea,the sedimentary formations are mainly clastic rocksiliceous rock formation,the upper coal—contained formation.With the Changning Meng Lian ocean expansion,ocean island begin to develop,material deposition continuing,appearing volcano material,the protolith may contain volcano matter through studying the thin section.To the Late Permian,Crust of Changning Menglian ocean begin to subduct to the east of the Yangtze block,ocean basin began to close,but it still has formation here at this time,mainly shallow carbonate formation,with proceeding of subduction,in the low temperature groove(7Km deep),due to changes in temperature and pressurer,appearing metamorphism(M1)and deformation(D1)for the first time,the shear effect produced by deformation lead to some cleavage,occurring regional foliation S1,major metamorphic minerals formed in metamorphism is long flake biotite.The main metamorphic mineral assemblages are biotite(Bi)+feldspar(Pl)+quartz(Q).Subsequently,crustal uplift,depositional break,because the Changning Meng Lianyang has closed during the Indosinian period,Baoshan-Zhenkang block in the west and the Yangtze block in the east knocked each other.In the Indosinian,under the action of faults,the hot spring formation clipping and retracing,back to a position about1-2Km depth,the position is still belongs to the low temperature groove,and occurring axial cleavage in the core of the fold,namely S2.That is,the emergence of the second metamorphism(M2)and deformation(D2).The deformation is affected by the strong pressure,so the rock have dewatered,so the second metamorphic deformation process is affected by temperature(T),pressure(Ps)and fluid(C).The main metamorphic minerals in the second generation of metamorphism is Muscovite,while there have some of biotite formed in same period,find that the first phase of biotite parallel growth of rock slice,namely S1 parallel S2,and we can see incomplete metamorphism biotite,so the the Muscovite is formed by the first stage of metamorphism and metamorphic biotite.The main mineral of the second stage metamorphism is Muscovite(Mus)+quartz(Q) Then,the crust continues to rise,the sedimentary break continues.In the Jurassic Cretaceous start orogeny,namely Yanshan period intracontinental orogeny,occurred third deformation(D3),under extrusion shearing,S3 emergencing,after Yanshan intracontinental orogenic period,in Himalayan period there have large-scale nappe structure and differential uplift and faulting.So the third deformation(D3)strengthened,with weak metamorphism,sericite emergencing.
基金funded by the National 305 Project of China (2018A03004-1, 2015BAB05B01-02)the Fundamental Research Fund for Central Universities(B16020127)
文摘The West Kunlun orogenic belt(WKOB) along the northern margin of the Tibetan Plateau is important for understanding the evolution of the Proto-and Paleo-Tethys oceans. Previous investigations have focused on the igneous rocks and ophiolites distributed mostly along the Xinjiang-Tibet road and the China-Pakistan road, and have constructed a preliminary tectonic model for this orogenic belt. However, few studies have focused on the so-called Precambrian basement in this area. As a result, the tectonic affinity of the individual terranes of the WKOB and their detailed evolution process are uncertain. Here we report new field observations, zircon and monazite U-Pb ages of the "Precambrian basement" of the South Kunlun terrane(SKT) and the Tianshuihai terrane(TSHT), two major terranes in the WKOB. Based on new zircon U-Pb age data, the amphibolite-facies metamorphosed volcanosedimentary sequence within SKT was deposited during the late Neoproterozoic to Cambrian(600-500 Ma), and the flysch-affinity Tianshuihai Group, as the basement of the TSHT, was deposited during the late Neoproterozoic rather than Mesoproterozoic. The rock association of the volcano-sedimentary sequence within SKT suggests a large early Paleozoic accretionary wedge formed by the long-term lowangle southward subduction of the Proto-Tethys Ocean between Tarim and TSHT. The amphibolitefacies metamorphism in SKT occurred at ca. 440 Ma. This ca. 440 Ma metamorphism is genetically related to the closure of the Proto-Tethys Ocean between Tarim and the Tianshuihai terrane, which led to the assembly of Tarim to Eastern Gondwana and the final formation of the Gondwana. Since the late Paleozoic to early Mesozoic, the northward subduction of the Paleo-Tethys Ocean along the HongshihuQiaoertianshan belt produced the voluminous early Mesozoic arc-signature granites along the southern part of NKT-TSHT. The Paleo-Tethys ocean between TSHT and Karakorum closed at ca. 200 Ma, as demonstrated by the monazite age of the paragneiss in the Kangxiwa Group. Our study does not favor the existence of a Precambrian basement in SKT.
文摘This paper emphasizes that the interactive constraints of geology and isotopic dating is the best approach to construct the geological event sequence, and has compiled 106 data of reasonable isotopic ages for the igneous rocks of the Yanshan belt. We propose a sequence of mgmatic-tectonic events in the Jurassic-Cretaceous Yanshan orogen of North China. Five orogenic episodes are divided, (1) pre-and initial orogenic episode (Early Jurassic); (2) early orogenic episode (Middle Jurassic); (3) peak orogenic episode (Late Jurassic); (4) late orogenic episode (early Early Cretaceous), and (5) post-orogenic episode. Each episode is a short cycle, all of the orogenic processes construct a longer cycle, and they, in general, followed a counter-clockwise (ccw) PTt path. Finally, it is suggested that the Yanshanian movement was so intensive that the magmatism and tectonic deformation had involved all the lithosphere thickness and the late-Achaean-formed cratonic lithosphere had been significantly reworked.
基金This rescarch was jointly supported by the NationalNatural Science Foundation of China Grant No.4917-2094National Key Project No.305with additionalsuppor for the analyses from the Modern AnalysisCentre of Nanjing University.
文摘The main types of intrusive rocks in the Kelameili-Harlik Hercynian orogenic belt include calc-alkaline granites, diabase dykes, kaligranites and alkaline granites. Investigation in field geology, petrology, mineralogy and geochemistry shows that the calc-alkaline granites belong to the syntexis-type (or I-type) and were formed in a pre-collisional magmatic arc environment. In consideration of the fact that kaligranites have many features of alkaline granites with higher consolidation temperatures than the calc-alkaline granites and show a discontinuity of minor element and REE evolution in respect to the calc-alkaline granites, they could not have been derived by differentiation of magmas for the calc-alkaline granites, but are likely to have been generated in an environment analogous to that for alkaline granites. The triplet of basic dyke swarms, kaligranites and alkaline granites could be regarded as a prominent indication of the initial stage of post-collisional delamination and extension. These rocks might have originated from underplating and intraplating of mantle-derived magmas at varying levels with varying degrees of partial melting, mixing, and interchange of crustal and mantle materials
基金supported by China Geological Survey(CGS) and IGMA 5000 (Grant No. 12120111200131)the ministry of Science and Technology (MST) (Grant No.,2011FY120100)
文摘In a re-study of regional geology by the China Geological Survey (CGS), the key problem is in the stratigraphical division and correlation. According to the new isotopic dating of the Mesoand Neoproterozoic in China, there have been great changes in the strata correlation and tectonic explanation. The authors obtained four zircon sensitive high resolution ion micro-probe (SHRIMP) U- Pb datings from the bentonite of the Lengjiaxi Group (822±10 Ma, 823±12 Ma and 834±11 Ma) and Banxi Group (802.6±7.6 Ma) in north Hunan Province, which is considered to be the middle part of the Jiangnan Orogenic Belt. On the basis of the zircon dating mentioned above, the end of the Wuling orogen is first limited in the period from 822 Ma to 802 Ma in one continued outcrop (Lucheng section) in Linxiang city, Hunan Province. Combining a series of new zircon U-Pb datings in the Yangtze and Cathaysia blocks, several Neoproterozoic volcanic events and distribution of the metamorphic rocks in the Jiangnan Orogenic Belt have been distinguished. In the context of the global geodynamics, it is useful to set up a practical and high precision chronological framework and basic and unified late Precambrian section in South China.
基金financially supported by the Chinese 973 project(2012CB416804)the ‘‘CAS Hundred Talents’’ Project from the Chinese Academy of Sciences(KZCX2-YW-BR-09)to Qi Liang
文摘Laser ablation–inductively coupled plasma–mass spectrometry(LA–ICP–MS) was used to determine the trace element concentrations of magnetite from the Heifengshan, Shuangfengshan, and Shaquanzi Fe(–Cu) deposits in the Eastern Tianshan Orogenic Belt. The magnetite from these deposits typically contains detectable Mg, Al, Ti, V, Cr, Mn, Co, Ni, Zn and Ga. The trace element contents in magnetite generally vary less than one order of magnitude. The subtle variations of trace element concentrations within a magnetite grain and between the magnetite grains in the same sample probably indicate local inhomogeneity of ore–forming fluids. The variations of Co in magnetite between samples are probably due to the mineral proportion of magnetite and pyrite. Factor analysis has discriminated three types of magnetite: Ni–Mn–V–Ti(Factor 1), Mg–Al–Zn(Factor 2), and Ga– Co(Factor 3) magnetite. Magnetite from the Heifengshan and Shuangfengshan Fe deposits has similar normalized trace element spider patterns and cannot be discriminated according to these factors. However, magnetite from the Shaquanzi Fe–Cu deposit has affinity to Factor 2 with lower Mg and Al but higher Zn concentrations, indicating that the ore–forming fluids responsible for the Fe–Cu deposit are different from those for Fe deposits. Chemical composition of magnetite indicates that magnetite from these Fe(–Cu) deposits was formed by hydrothermal processes rather than magmatic differentiation. The formation of these Fe(–Cu) deposits may be related to felsic magmatism.
基金the Doctoral Programme of Higher Education 97049119 the National Natural Science Foundation of China grant 40072062.
文摘The Lajishan orogenic belt is one of the E-W-trending Caledonian orogenicbelts within the Qinling-Qilian orogenic system. It was formed upon the Jiningian basement byintensive taphrogenesis. Its major characteristics comprise the prominent faulting along the northand south boundaries, the highly complicated petrological and petro-geochemical features of thevolcanic rock series, and the development of a new type of ophiolite suite. In terms of tectonicanalysis and the sequential analysis of tectonic settings of magmatic rocks, it is suggested thatthe Lajishan orogenic belt has undergone a complete 'opening-closing' cycle, which can be furtherdivided into 3 second-order 'opening-closing' cycles. The composite characteristics of the'opening-closing' movement show that Laji Mountain is a typical fault orogenic belt. The faultorogenic belt is one of the most important types of intracontinental orogens. It is of criticaltheoretical and practical significance to summarize the characteristics and the diagnostic criteriaof this kind of orogenic belts, and study the mechanism of their formation and build models of theirevolution.
基金supported by the Chinese National Key Scientific Program--the Chinese Continental Seientitle Drilling Projectthe National Natural Science Foundation of China(NSFC Grant 49772142)1:250000 Regional Geological Survey of the Lianyungang Sheet(I50C002004)of P.R.China and the Laboratory of Continental Dynamics of the Land and Resource Ministry of China
文摘The Drillhole ZK703 with a depth of 558 m is located in the Donghai area of the southern Sulu ultrahigh-pressure (UHP) metamorphic belt, eastern China, and penetrates typical UHP eclogites and various non-mafic rocks, including peridotite, gneiss, schist and quartzite. Their protoliths include ultramafic, mafic, intermediate, intermediate-acidic, acidic igneous rocks and sediments. These rocks are intimately interlayered, which are meters to millimeters thick with sharp and nontectonic contacts, suggesting in-situ metamorphism under UHP eclogite facies conditions. The following petrologic features indicate that the non-mafic rocks have experienced early-stage UHP metamorphism together with the eclogites: (1) phengite relics in gneisses and schists contain a high content of Si, up to 3.52 p.f.u. (per formula unit), while amphibolite-facies phengites have considerably low Si content (<3.26 p.f.u.); (2) jadeite relics are found in quartzite and jadeitite; (3) various types of symplectitic coronas and pseud
文摘The superlarge Baguamiao, large Liba and Xiaogouli gold deposits represent three typical gold deposits different from the Carlin type in the western Qinling Orogenic Belt. Based on Ar-Ar dating of quartz from ores, U-Pb dating of single zircon from granite, tracing of H and O isotopes and studies on the mineralogy and texture of spots and bleached alteration developed in wall rocks, this paper focuses the relations between gold deposits and granite to clarify the origin of gold deposits and the metallogenesis in the tectonic evolution of the Qinling Orogenic Belt. The comprehensive studies show that the age of the granite (148.1-244 Ma) is identical with that of the gold deposits (131.91-232.56 Ma). It is suggested that the granite has close temporal, spatial and genetic relationship with the gold deposits. The granite provides a heat source, water source and considerable amount of ore-forming material. Finally, it is concluded that the orogeny by collision, emplacement of the granite and positioning of the gold deposits represent a successive process. Both the granite and gold deposits resulted from the syn-orogeny and post-orogeny tectonic evolution.
基金jointly supported by the National Science Foundation of China (Grant No.,41472191,41502191,41172186,40972136)the Special Fund for Basic Scientific Research of Central Colleages,Chang'an University (Grant Nos.310827161002,310827161006)the Commonweal Geological Survey,the Aluminum Corporation of China and the Land-Resources Department of Qinghai Province (Grant No.,200801)
文摘The Qushi’ang granodiorite(QSG) is located at the central east of the ophiolitic melange belt in the East Kunlun Orogenic Belt(EKOB) in the northern margin of the Qinghai-Tibetan Plateau. LA-MC-ICP-MS zircon U–Pb dating suggests that the granodiorite and mafic microgranular enclaves(MMEs) crystallized 246.61±0.62 and 245.45±0.9 Ma ago, respectively. Granodiorite, porphyritic diorite, and MMEs are metaluminous and medium-K calk-alkaline series, with island-arc magma features, such as LILE enrichment and HFSE depletion. The porphyritic diorite has high Cr(13.50 ppm to 59.01 ppm), Ni(228.53 ppm to 261.29 ppm), and Mg~#(46–54). Granodiorite and porphyritic diorite have similar mineral compositions and evolved major and trace elements contents, particularly Cr and Ni, both of which are significantly higher than that in granites of the same period. The crystallization age of MMEs is close to that of granodiorite, and their major and trace elements contents are in-between porphyritic diorite and granodiorite. The results suggest that the original mafic magma, which was the product of mantle melting by subduction process, intruded into the lower crust(Kuhai Rock Group), resulting in the formation of granodiorite. Countinous intrusion of mafic magma into the unconsolidated granodiorite formed MMEs and porphyritic diorite. The granodiorite reformed by late-stage strike-slip faulting tectonic event indicates that the strike-slip fault of Middle Kunlun and the collision of the Bayanhar block with East Kunlun were later than 246 Ma. Therefore, the formation of the QSG not only indicates the critical period of evolution of East Kunlun but also represents the tectonic transition from oceanic crust subduction to slab breaking.