China established Xiong’an New Area in Hebei Province in 2017,which is planned to accommodate about 5 million people,aiming to relieve Beijing City of the functions non-essential to its role as China’s capital and t...China established Xiong’an New Area in Hebei Province in 2017,which is planned to accommodate about 5 million people,aiming to relieve Beijing City of the functions non-essential to its role as China’s capital and to expedite the coordinated development of the Beijing-Tianjin-Hebei region.From 2017 to 2021,the China Geological Survey(CGS)took the lead in multi-factor urban geological surveys involving space,resources,environments,and disasters according to the general requirements of“global vision,international standards,distinctive Chinese features,and future-oriented goals”in Xiong’an New Area,identifying the engineering geologic conditions and geologic environmental challenges of this area.The achievements also include a 3D engineering geological structure model for the whole area,along with“one city proper and five clusters”,insights into the ecology and the background endowment of natural resources like land,geothermal resources,groundwater,and wetland of the area before engineering construction,a comprehensive monitoring network of resources and environments in the area,and the“Transparent Xiong’an”geological information platform that is open,shared,dynamically updated,and three-dimensionally visualized.China’s geologists and urban geology have played a significant role in the urban planning and construction of Xiong’an New Area,providing whole-process geological solutions for urban planning,construction,operation and management.The future urban construction of Xiong’an New Area will necessitate the theoretical and technical support of earth system science(ESS)from various aspects,and the purpose is to enhance the resilience of the new type of city and to provide support for the green,low-carbon,and sustainable development of this area.展开更多
Alkaline igneous rocks represent one of the most economically important resources of radioactive minerals and rare metals.New field observations and petrographic studies are integrated with whole-rock geochemical anal...Alkaline igneous rocks represent one of the most economically important resources of radioactive minerals and rare metals.New field observations and petrographic studies are integrated with whole-rock geochemical analyses and Gamma ray spectroscopy data of alkaline rocks associated with the Amreit complex.The fieldwork was achieved by the collection of more than forty samples from alkaline granites and alkaline syenites.The youngest rocks cropping out in the study area are the cogenetic alkaline rocks,ranging from alkaline granite to alkaline syenite.These alkaline rocks are composed essentially of K-feldspar,alkali amphiboles(arfvedsonite),and sodic pyroxene,with accessories such as zircon,apatite,and ilmenite.Mineral characterization of the highly radioactive zones in both alkaline granite and alkaline syenite displays enrichment in monazite,thorite,zircon,ferro-columbite,xenotime,and allanite minerals.Geochemical analyses indicate that the Amreit rocks are alkaline with peralkaline affinity and have high concentrations of total alkalis(K_(2)O+Na_(2)O),large ion lithophile elements(LILEs;Ba and Rb),high field strength elements(HFSEs;Y,Zr and Nb),rare earth elements(REEs)and significantly depleted in K,Sr,P,Ti,and Eu,typically of post-collision A-type granites.Typically,the Amreit alkaline igneous rocks are classified as within plate granites and display A2 subtype characteristics.The fractionation of K-feldspars played a distinctive role during the magmatic evolution of these alkaline rocks.The geochemical characteristics indicate that the studied alkaline igneous rocks which were originated by fractional crystallization of alkaline magmas were responsible for the enrichment of the REE and rare metals in the residual melt.The high radioactivity is essentially related to accessory minerals,such as zircon,allanite,and monazite.The alkaline granite is the most U-and Thrich rock,where radioactivity level reaches up to 14.7 ppm(181.55 Bq/kg)e U,40.6 ppm(164.84 Bq/kg)e Th,whereas in alkaline syenite radioactivity level is 8.5 ppm(104.96 Bq/kg)e U,30.2 ppm(122.61 Bq/kg)e Th.These observations suppose that these alkaline rocks may be important targets for REEs and radioactive mineral exploration.展开更多
RBOE is a new type of DNAN-based high-energy melt-cast mixed explosive,whose safety under thermal stimulation is significantly affected by heating conditions and venting area of the warhead.Based on the thermal decomp...RBOE is a new type of DNAN-based high-energy melt-cast mixed explosive,whose safety under thermal stimulation is significantly affected by heating conditions and venting area of the warhead.Based on the thermal decomposition reaction characteristics and combustion characteristics of each component of RBOE explosive,the cook-off calculation models of RBOE warhead before and after ignition were established.In addition,closed and vented warheads were designed,as well as fast and slow cook-off test devices.The cook-off characteristics and thermal safety venting area of RBOE warhead were extensively studied.The results showed that the closed RBOE warhead underwent deflagration reaction under both slow and fast cook-off conditions.The calculation result of the shell wall temperature before slow cookoff ignition response of the warhead was 454.06 K,with an error of+1.75%compared to the test result of462.15 K,and the temperature rise rate calculated was in good agreement with the test.The calculated ignition time of RBOE warhead under fast cook-off was 161 s,with an error of+8.8%compared to the test result of 148 s,which verified the accuracy of cook-off model of RBOE warhead before ignition.According to the cook-off calculation model of the warhead after ignition and cook-off test of the vented warhead,it was determined that the thermal safety venting area was 1124.61 mm^(2)for fast cook-off and 530.66 mm~2 for slow cook-off,effectively preventing the reaction of warhead above combustion.Therefore,this study provides a scientific basis for the thermal safety design and evaluation of insensitive warheads.展开更多
AIM:To elucidate the neuropathological mechanisms underlying diabetic vitreous hemorrhage(DVH)and its correlation with clinical characteristics.METHODS:Twenty-one individuals with DVH(male/female 12/9;mean age 52.29...AIM:To elucidate the neuropathological mechanisms underlying diabetic vitreous hemorrhage(DVH)and its correlation with clinical characteristics.METHODS:Twenty-one individuals with DVH(male/female 12/9;mean age 52.29±11.66y)were selected,alongside 21 appropriately matched controls with diabetes mellitus(DM).Voxel-based morphometry(VBM)techniques were employed to identify aberrant functional regions in the brain.Receiver operating characteristic(ROC)curves were utilized for classification based on the average VBM values of the two groups,and Pearson correlation analysis was conducted to assess the relationship between average VBM values in distinct brain regions and clinical manifestations.RESULTS:Relative to the DM controls,DVH patients exhibited reduced VBM values in the right superior temporal pole,the right superior temporal gyrus,the right medial orbital frontal gyrus,and the left superior frontal gyrus.Furthermore,ROC curve analysis of these four brain regions in DVH patients demonstrated a high degree of accuracy,as indicated by the area under the curve.The average VBM value in each of these regions exhibited a negative correlation with both the duration of DVH and the score on the Hospital Anxiety and Depression Scale(HADS).CONCLUSION:Pathological alterations in four distinct brain regions are observed in patients with DVH,potentially reflecting neuropathological changes associated with this condition.展开更多
Investigating the ecological impact of land use change in the context of the construction of national water network project is crucial,as it is imperative for achieving the sustainable development goals of the nationa...Investigating the ecological impact of land use change in the context of the construction of national water network project is crucial,as it is imperative for achieving the sustainable development goals of the national water network and guaranteeing regional ecological stability.Using the Danjiangkou Reservoir Area(DRA),China as the study area,this paper first examined the spatiotemporal dynamics of natural landscape patterns and ecosystem service values(ESV)in the DRA from 2000 to 2018 and then investigated the spatial clustering characteristics of the ESV using spatial statistical analysis tools.Finally,the patch-generating land use simulation(PLUS)model was used to simulate the natural landscape and future changes in the ESV of the DRA from 2018 to 2028 under four different development scenarios:business as usual(BAU),economic development(ED),ecological protection(EP),and shoreline protection(SP).The results show that:during 2000-2018,the construction of water facilities had a significant impact on regional land use/land cover(LULC)change,with a 24830 ha increase in watershed area.ESV exhibited an increasing trend,with a significant and growing spatial clustering effect.The transformation of farmland to water bodies led to accelerated ESV growth,while the transformation of forest land to farmland led to a decrease in the ESV.Normalized difference vegetation index(NDVI)had the strongest effect on the ESV.ESV exhibited a continuous increase from 2018 to 2028 under all the simulation scenarios.The EP scenario had the greatest increase in ESV,while the ED scenario had the smallest increase.The findings suggest that projected land use patterns under different scenarios have varied impacts on ecosystem services(ESs)and that the management and planning of the DRA should balance social,economic,ecological,and security benefits.nomic,ecological,and security benefits.展开更多
To identify the root causes of heavy metal contamination in soils as well as prevent and control such contamination from its sources,this study explored the accumulation patterns and ecological risks of heavy metals l...To identify the root causes of heavy metal contamination in soils as well as prevent and control such contamination from its sources,this study explored the accumulation patterns and ecological risks of heavy metals like Cd and Pb in solid waste in mining areas and across the water body,sediment,soil and agricultural product ecosystem surrounding the mining areas.Focusing on the residual solid waste samples in lead-zinc deposits in a certain area of Guizhou Province,along with samples of topsoils,irrigation water,river sediments,and crops from surrounding areas.This study analyzed the distributions of eight heavy metals,i.e.,Cd,As,Cr,Hg,Pb,Zn,Cu,and Ni,in the samples through field surveys and sample tests.Furthermore,this study assessed the contamination levels and ecological risks of heavy metals in soils,sediments,and agricultural products using methods such as the single-factor index,Nemerow composite index,and potential ecological risk assessment.The results indicate that heavy metals in the solid waste samples all exhibited concentrations exceeding their risk screening values,with 60%greater than their risk intervention values.The soils and sediments demonstrate slight and moderate comprehensive ecological risks of heavy metals.The single-factor potential ecological risks of heavy metals in both the soil and sediment samples decreased in the order of Hg,Cd,Pb,As,Cu,Zn,Cr,and Ni,suggesting the same sources of heavy metals in the soils and sediments.Most of the agricultural product samples exhibited over-limit concentrations of heavy metals dominated by Cd,Pb,Ni,and Cr,excluding Hg and As.The agricultural product assessment using the Nemerow composite index reveals that 35%of the agricultural product samples reached the heavy metal contamination level,implying that the agricultural products from farmland around the solid waste dumps have been contaminated with heavy metals.The eight heavy metals in the soil,sediment,and agricultural product samples manifested high coefficients of variation(CVs),indicating pronounced spatial variability.This suggests that their concentrations in soils,sediments,and agricultural products are significantly influenced by human mining activities.Additionally,the agricultural products exhibit strong transport and accumulation capacities for Cd,Cu,and Zn.展开更多
Based on palaeomagnetic studies of the Precambrian gold deposits in the Xiong'ershan area, Henan Province, the authors infer that the ore-forming processes of the Beiling alteration-type gold ore deposit and the D...Based on palaeomagnetic studies of the Precambrian gold deposits in the Xiong'ershan area, Henan Province, the authors infer that the ore-forming processes of the Beiling alteration-type gold ore deposit and the Dianfang breccia-type gold ore deposit started in the Proterozoic, and was superimposed by later mineralization, whereas the mineralization age of the Jiguanshan quartz- vein type gold ore deposit is Yanshanian.展开更多
The degree and scale of underground space development are growing with the continuous advancement of urbanization in China.The lack of research on the change of the groundwater flow field before and after the developm...The degree and scale of underground space development are growing with the continuous advancement of urbanization in China.The lack of research on the change of the groundwater flow field before and after the development of underground space has led to various problems in the process of underground space development and operation.This paper took the key development zone of the Xiong’an New Area as the study area,and used the Groundwater modeling system software(GMS)to analyse the influence on the groundwater flow field under the point,line,and surface development modes.The main results showed that the underground space development would lead to the expansion and deepening of the cone of depression in the aquifer.The groundwater level on the upstream face of the underground structure would rise,while the water level on the downstream face would drop.The“line”concurrent development has the least impact on the groundwater flow field,and the maximum rise of water level on the upstream side of the underground structure is expected to be approximately 3.05 m.The“surface”development has the greatest impact on the groundwater flow field,and the maximum rise of water level is expected to be 7.17 m.展开更多
The groundwater level has been continuously decreasing due to climate change and long-time overexploitation in the Xiong’an New Area,North China,which caused the enhanced mixing of groundwater in different aquifers a...The groundwater level has been continuously decreasing due to climate change and long-time overexploitation in the Xiong’an New Area,North China,which caused the enhanced mixing of groundwater in different aquifers and significant changes in regional groundwater chemistry characteristics.In this study,groundwater and sediment pore-water in drilling cores obtained from a 600 m borehole were investigated to evaluate hydrogeochemical processes in shallow and deep aquifers and paleo-environmental evolution in the past ca.3.10 Ma.Results showed that there was no obvious change overall in chemical composition along the direction of groundwater runoff,but different hydrochemical processes occurred in shallow and deep groundwater in the vertical direction.Shallow groundwater(<150 m)in the Xiong’an New Area was characterized by high salinity(TDS>1000 mg/L)and high concentrations of Mn and Fe,while deep groundwater had better water quality with lower salinity.The high TDS values mostly occurred in aquifers with depth<70 m and>500 m below land surface.Water isotopes showed that aquifer pore-water mostly originated from meteoric water under the influence of evaporation,and aquitard pore-water belonged to Paleo meteoric water.In addition,the evolution of the paleoclimate since 3.10 Ma BP was reconstructed,and four climate periods were determined by theδ18O profiles of pore-water and sporopollen records from sediments at different depths.It can be inferred that the Quaternary Pleistocene(0.78‒2.58 Ma BP)was dominated by the cold and dry climate of the glacial period,with three interglacial intervals of warm and humid climate.What’s more,this study demonstrates the possibilities of the applications of pore-water on the hydrogeochemical study and further supports the finding that pore-water could retain the feature of paleo-sedimentary water.展开更多
In 2017,China’s central government approved the national strategy to build Xiong’an New Area(XNA,100 km southwest to Beijing),which was announced as a"millennium strategy"and a"demo area"for a su...In 2017,China’s central government approved the national strategy to build Xiong’an New Area(XNA,100 km southwest to Beijing),which was announced as a"millennium strategy"and a"demo area"for a sustainable,modern,and innovative urban model.Xiong’an will draw in as much as$380 billion investment and is expected to help accelerate the development of the wider Beijing-Tianjin-Hebei(Jingjinji)Area.In this paper,present subsidence in the XNA area is investigated using InSAR observations for the first time.The 24 SAR images acquired by European Space Agency’s Sentinel-1 satellites during the period from June 2017 to July 2018 suggest that in the north of Xiong County,the subsidence rate reaches up to 90 mm/y,which is highly correlated with the exploitation of geothermal drilling.As the construction in the XNA area will significantly accelerate and its high-quality development,the InSAR findings could provide valuable information for future sustainable urban planning and underground infrastructure construction.展开更多
On 1 April 2017 China established Xiongan New Area in Hebei Province, which was described as ‘a strategy crucial for a millennium to come'. A point of interest for the public is to be aware of the historical climate...On 1 April 2017 China established Xiongan New Area in Hebei Province, which was described as ‘a strategy crucial for a millennium to come'. A point of interest for the public is to be aware of the historical climate change in this new area; however, results from previous global-scale or largerregional-scale averages provide relatively limited information because of the distinct regional differences in climate change. This study analyzes the changes in mean and extreme temperature in this area, based on homogenized daily temperature data for the period 1960–2016. The results show a significant warming in the indices of annual, summer, and winter mean temperature(Tmean), maximum temperature(Tmax), and minimum temperature(Tmin). The linear rate of annual Tmean is 0.34 °C/decade. Temperatures on the hottest day, the warmest night, the coldest day, and the coldest night, every year, all show increasing trends, with the trends in the two nighttime-related indices being significant. An increasing occurrence of warm days, warm nights, hot days, and tropical nights, but a decreasing occurrence of cold days, cold nights, icing days, and frost days, are found, all of which are significant, except for the occurrences of hot days and icing days. A significant extension of the length of the thermal growing season is also found. The magnitudes of change in most of the temperature indices in Xiongan New Area are larger than those of the adjacent Jing-Jin-Ji and North China regional mean. These results could provide valuable information for policymakers, city planners, engineers, and migrants to this new area.展开更多
With the establishment and development of Xiong’an New Area in China, more foreign industries and visitors will be attracted to come here. Investigations made in our study show that the environmental English public s...With the establishment and development of Xiong’an New Area in China, more foreign industries and visitors will be attracted to come here. Investigations made in our study show that the environmental English public signs are very important. They can offer directions for foreigners who can’t understand Chinese well because they have these three functions: indication, suggestion and prohibition. In order to help Xiong’an New Area play its “eco card”, the translators are supposed to attach great importance to the translation of environmental English public signs.展开更多
After the State Council of China announced the establishment of Xiongan New Area in April 1st,2017,the China Geological Survey(CGS)had actively conducted geological survey projects including engineering geological sur...After the State Council of China announced the establishment of Xiongan New Area in April 1st,2017,the China Geological Survey(CGS)had actively conducted geological survey projects including engineering geological surveys and surveys of soil quality,groundwater,land subsidence,and shallow geothermal energy.These activities were documented in the Geological Survey Report in Support of the Planning and Construction of the Xiongan New Area,a document intended to be used as a reference for geological information in the general planning of the Xiongan New Area.In 2018,a project named Transparent Xiongan Geological Information Platform was initiated by the CGS in an effort to explore the government-led data and information sharing mechanism.The idea behind the Platform was to aggregate geological information as well as relevant planning and development data from various cities in an all-encompassing urban data platform integrating above ground and underground information.The objective of the Platform is to build a space-air-ground integrated environment and resources monitoring mechanism using the latest technologies such as cloud services and IoT devices to facilitate the development of an“Intelligent Xiongan”.展开更多
The purpose of this paper is to study the air pollutants in Xiong’an New Area based on MATLAB grey model [1]. From 2011 to 2016, the results of sulfur dioxide (SO2), nitrogen dioxide (NO2) and inhalable particulate m...The purpose of this paper is to study the air pollutants in Xiong’an New Area based on MATLAB grey model [1]. From 2011 to 2016, the results of sulfur dioxide (SO2), nitrogen dioxide (NO2) and inhalable particulate matter (PM1O) detected at monitoring points in the three counties of Xiong’an were analyzed. According to the national environmental air quality standard [2], the air quality in Xiong’an New Area was reasonably evaluated based on grey model in MATLAB. Judging from the weight of pollution factors in the model, sulfur dioxide (SO2) is the controlling factor of air quality in Xiong’an New Area, and the weight of nitrogen dioxide (NO2) gradually increases. The main sources of the three pollutants were obtained by comprehensive data analysis, and a grey model was established according to the mass concentration of the main air pollutants, and the grey forecasting model was tested. The experimental results show that the model can be effectively applied to the forecasting of ambient air quality. On this basis, the present situation of atmospheric environmental quality in Xiong’an New Area and suggestions for improvement are obtained.展开更多
Xiong’er volcanic rocks cover an area of more than6×104 km2 along the southern margin of North China Craton.The Xiong’er group has been divided,from bottom to top,into the Dagushi,Xushan,Jidanping and
A substantial reduction in groundwater level,exacerbated by coal mining activities,is intensifying water scarcity in western China’s ecologically fragile coal mining areas.China’s national strategic goal of achievin...A substantial reduction in groundwater level,exacerbated by coal mining activities,is intensifying water scarcity in western China’s ecologically fragile coal mining areas.China’s national strategic goal of achieving a carbon peak and carbon neutrality has made eco-friendly mining that prioritizes the protection and efficient use of water resources essential.Based on the resource characteristics of mine water and heat hazards,an intensive coal-water-thermal collaborative co-mining paradigm for the duration of the mining process is proposed.An integrated system for the production,supply,and storage of mining companion resources is achieved through technologies such as roof water inrush prevention and control,hydrothermal quality improvement,and deep-injection geological storage.An active preventive and control system achieved by adjusting the mining technology and a passive system centered on multiobjective drainage and grouting treatment are suggested,in accordance with the original geological characteristics and dynamic process of water inrush.By implementing advanced multi-objective drainage,specifically designed to address the“skylight-type”water inrush mode in the Yulin mining area of Shaanxi Province,a substantial reduction of 50%in water drillings and inflow was achieved,leading to stabilized water conditions that effectively ensure subsequent safe coal mining.An integrated-energy complementary model that incorporates the clean production concept of heat utilization is also proposed.The findings indicate a potential saving of 8419 t of standard coal by using water and air heat as an alternative heating source for the Xiaojihan coalmine,resulting in an impressive energy conservation of 50.2%and a notable 24.2%reduction in carbon emissions.The ultra-deep sustained water injection of 100 m^(3)·h^(-1)in a single well would not rupture the formation or cause water leakage,and 7.87×10^(5)t of mine water could be effectively stored in the Liujiagou Formation,presenting a viable method for mine-water management in the Ordos Basin and providing insights for green and low-carbon mining.展开更多
BACKGROUND The two-way relationship between periodontitis and type 2 diabetes mellitus(T2DM)is well established.Prolonged hyperglycemia contributes to increased periodontal destruction and severe periodontitis,accentu...BACKGROUND The two-way relationship between periodontitis and type 2 diabetes mellitus(T2DM)is well established.Prolonged hyperglycemia contributes to increased periodontal destruction and severe periodontitis,accentuating diabetic complications.An inflammatory link exists between diabetic retinopathy(DR)and periodontitis,but the studies regarding this association and the role of lipoprotein(a)[Lp(a)]and interleukin-6(IL-6)in these conditions are scarce in the literature.AIM To determine the correlation of periodontal inflamed surface area(PISA)with glycated Hb(HbA1c),serum IL-6 and Lp(a)in T2DM subjects with retinopathy.METHODS This cross-sectional study comprised 40 T2DM subjects with DR and 40 T2DM subjects without DR.All subjects were assessed for periodontal parameters[bleeding on probing(BOP),probing pocket depth,clinical attachment loss(CAL),oral hygiene index-simplified,plaque index(PI)and PISA],and systemic parameters[HbA1c,fasting plasma glucose and postprandial plasma glucose,fasting lipid profile,serum IL-6 and serum Lp(a)].RESULTS The proportion of periodontitis in T2DM with and without DR was 47.5%and 27.5%respectively.Severity of periodontitis,CAL,PISA,IL-6 and Lp(a)were higher in T2DM with DR group compared to T2DM without DR group.Significant difference was observed in the mean percentage of sites with BOP between T2DM with DR(69%)and T2DM without DR(41%),but there was no significant difference in PI(P>0.05).HbA1c was positively correlated with CAL(r=0.351,P=0.001),and PISA(r=0.393,P≤0.001)in study subjects.A positive correlation was found between PISA and IL-6(r=0.651,P<0.0001);PISA and Lp(a)(r=0.59,P<0.001);CAL and IL-6(r=0.527,P<0.0001)and CAL and Lp(a)(r=0.631,P<0.001)among study subjects.CONCLUSION Despite both groups having poor glycemic control and comparable plaque scores,the periodontal parameters were higher in DR as compared to T2DM without DR.Since a bidirectional link exists between periodontitis and DM,the presence of DR may have contributed to the severity of periodontal destruction and periodontitis may have influenced the progression of DR.展开更多
In the Mediterranean region,despite bamboo being an alien species that can seriously alter plant and ani-mal biocoenosis,the area occupied by bamboo plantations continues to increase,especially for the purpose to sequ...In the Mediterranean region,despite bamboo being an alien species that can seriously alter plant and ani-mal biocoenosis,the area occupied by bamboo plantations continues to increase,especially for the purpose to seques-ter carbon(C).However,the C dynamics in the soil-plant system when bamboo is grown outside its native area are poorly understood.Here we investigated the C mitigation potential of the fast-growing Moso bamboo(Phyllostachys edulis)introduced in Italy for climate-change mitigation.We analyzed aboveground(AGB)and belowground(as root/shoot ratio)biomass,litter and soil organic C(SOC)at O-15-and 15-30-cm depths in a 4-year-old bamboo plantation in comparison with the former annual cropland on which the bamboo was established.To have an idea of the maximum C stored at an ecosystem level,a natural forest adjacent the two sites was also considered.In the plantation,C accumulation as AGB was stimulated,with 14.8±3.1 Mg C ha^(-1) stored in 3 years;because thinning was done to remove culms from the first year,the mean sequestration rate was 4.9 Mg C ha^(-1) a^(-1).The sequestration rates were high but comparable to other fast-growing tree species in Italy(e.g.,Pinus nigra).SOC was significantly higher in the bamboo plantation than in the cropland only at the 0-15 cm depth,but SOC stock did not differ.Possibly 4 years were not enough time for a clear increase in SOC,or the high nutrient uptake by bamboos might have depleted the soil nutrients,thus inhibiting the soil organic matter formation by bacteria.In comparison,the natural forest had significantly higher C levels in all the pools.For C dynamics at an ecosystem level,the bamboo plantation on the former annual cropland led to substantial C removal from the atmosphere(about 12 Mg C ha^(-1) a^(-1)).However,despite the promising C sequestration rates by bamboo,its introduction should be carefully considered due to potential ecological problems caused by this species in overexploited environments such as the Mediterranean area.展开更多
The presence of invasive plant species poses a substantial ecological impact,thus comprehensive evaluation of their potential range and risk under the influence of climate change is necessary.This study uses maximum e...The presence of invasive plant species poses a substantial ecological impact,thus comprehensive evaluation of their potential range and risk under the influence of climate change is necessary.This study uses maximum entropy(MaxEnt)modeling to forecast the likelihood of Leucaena leucocephala(Lam.)de Wit invasion in Saudi Arabia under present and future climate change scenarios.Utilizing the MaxEnt modeling,we integrated climatic and soil data to predict habitat suitability for the invasive species.We conducted a detailed analysis of the distribution patterns of the species,using climate variables and ecological factors.We focused on the important influence of temperature seasonality,temperature annual range,and precipitation seasonality.The distribution modeling used robust measures of area under the curve(AUC)and receiver-operator characteristic(ROC)curves,to map the invasion extent,which has a high level of accuracy in identifying appropriate habitats.The complex interaction that influenced the invasion of L.leucocephala was highlighted by the environmental parameters using Jackknife test.Presently,the actual geographic area where L.leucocephala was found in Saudi Arabia was considerably smaller than the theoretical maximum range,suggesting that it had the capacity to expand further.The MaxEnt model exhibited excellent prediction accuracy and produced reliable results based on the data from the ROC curve.Precipitation and temperature were the primary factors influencing the potential distribution of L.leucocephala.Currently,an estimated area of 216,342 km^(2)in Saudi Arabia was at a high probability of invasion by L.leucocephala.We investigated the potential for increased invasion hazards in the future due to climate change scenarios(Shared Socioeconomic Pathways(SSPs)245 and 585).The analysis of key climatic variables,including temperature seasonality and annual range,along with soil properties such as clay composition and nitrogen content,unveiled their substantial influence on the distribution dynamic of L.leucocephala.Our findings indicated a significant expansion of high risk zones.High-risk zones for L.leucocephala invasion in the current climate conditions had notable expansions projected under future climate scenarios,particularly evident in southern Makkah,Al Bahah,Madina,and Asir areas.The results,backed by thorough spatial studies,emphasize the need to reduce the possible ecological impacts of climate change on the spread of L.leucocephala.Moreover,the study provides valuable strategic insights for the management of invasion,highlighting the intricate relationship between climate change,habitat appropriateness,and the risks associated with invasive species.Proactive techniques are suggested to avoid and manage the spread of L.leucocephala,considering its high potential for future spread.This study enhances the overall comprehension of the dynamics of invasive species by combining modeling techniques with ecological knowledge.It also provides valuable information for decision-making to implement efficient conservation and management strategies in response to changing environmental conditions.展开更多
Baiyangdian Technology Town initiated in 2015 is the pre -form of Xiong' an New Ar-ea which is both a national new area and a national special economic zone. Xiong' an New Areacan be regarded as an exploration of al...Baiyangdian Technology Town initiated in 2015 is the pre -form of Xiong' an New Ar-ea which is both a national new area and a national special economic zone. Xiong' an New Areacan be regarded as an exploration of alternative mechanism of metropolitan space which fits the ruleof urban development. Xiong' an New Area is a national new area of the highest rank approved inthe process of National New Urbanization Plan. Therefore, the strategic positioning is supposed tobe fit in the new urbanization strategy and to have major leading and prototype functions in solvingthe problems of old style urbanization. Xiong' an New Area is to undertake great preas in preventingthe over gathering, which is a major task and principle of the planning.展开更多
基金supported by two projects initialed China Geological Survey: “Evaluation on Soil and Water Quality and Geological Survey in Xiong’an New Area (DD20189122)” and “Monitoring and Evaluation on Carrying Capacity of Resource and Environment in BeijingTianjin-Hebei Coordinated Development Zone and Xiong’an New Area (DD20221727)”
文摘China established Xiong’an New Area in Hebei Province in 2017,which is planned to accommodate about 5 million people,aiming to relieve Beijing City of the functions non-essential to its role as China’s capital and to expedite the coordinated development of the Beijing-Tianjin-Hebei region.From 2017 to 2021,the China Geological Survey(CGS)took the lead in multi-factor urban geological surveys involving space,resources,environments,and disasters according to the general requirements of“global vision,international standards,distinctive Chinese features,and future-oriented goals”in Xiong’an New Area,identifying the engineering geologic conditions and geologic environmental challenges of this area.The achievements also include a 3D engineering geological structure model for the whole area,along with“one city proper and five clusters”,insights into the ecology and the background endowment of natural resources like land,geothermal resources,groundwater,and wetland of the area before engineering construction,a comprehensive monitoring network of resources and environments in the area,and the“Transparent Xiong’an”geological information platform that is open,shared,dynamically updated,and three-dimensionally visualized.China’s geologists and urban geology have played a significant role in the urban planning and construction of Xiong’an New Area,providing whole-process geological solutions for urban planning,construction,operation and management.The future urban construction of Xiong’an New Area will necessitate the theoretical and technical support of earth system science(ESS)from various aspects,and the purpose is to enhance the resilience of the new type of city and to provide support for the green,low-carbon,and sustainable development of this area.
文摘Alkaline igneous rocks represent one of the most economically important resources of radioactive minerals and rare metals.New field observations and petrographic studies are integrated with whole-rock geochemical analyses and Gamma ray spectroscopy data of alkaline rocks associated with the Amreit complex.The fieldwork was achieved by the collection of more than forty samples from alkaline granites and alkaline syenites.The youngest rocks cropping out in the study area are the cogenetic alkaline rocks,ranging from alkaline granite to alkaline syenite.These alkaline rocks are composed essentially of K-feldspar,alkali amphiboles(arfvedsonite),and sodic pyroxene,with accessories such as zircon,apatite,and ilmenite.Mineral characterization of the highly radioactive zones in both alkaline granite and alkaline syenite displays enrichment in monazite,thorite,zircon,ferro-columbite,xenotime,and allanite minerals.Geochemical analyses indicate that the Amreit rocks are alkaline with peralkaline affinity and have high concentrations of total alkalis(K_(2)O+Na_(2)O),large ion lithophile elements(LILEs;Ba and Rb),high field strength elements(HFSEs;Y,Zr and Nb),rare earth elements(REEs)and significantly depleted in K,Sr,P,Ti,and Eu,typically of post-collision A-type granites.Typically,the Amreit alkaline igneous rocks are classified as within plate granites and display A2 subtype characteristics.The fractionation of K-feldspars played a distinctive role during the magmatic evolution of these alkaline rocks.The geochemical characteristics indicate that the studied alkaline igneous rocks which were originated by fractional crystallization of alkaline magmas were responsible for the enrichment of the REE and rare metals in the residual melt.The high radioactivity is essentially related to accessory minerals,such as zircon,allanite,and monazite.The alkaline granite is the most U-and Thrich rock,where radioactivity level reaches up to 14.7 ppm(181.55 Bq/kg)e U,40.6 ppm(164.84 Bq/kg)e Th,whereas in alkaline syenite radioactivity level is 8.5 ppm(104.96 Bq/kg)e U,30.2 ppm(122.61 Bq/kg)e Th.These observations suppose that these alkaline rocks may be important targets for REEs and radioactive mineral exploration.
基金National Natural Science Foundation of china(Grant No.12402468)。
文摘RBOE is a new type of DNAN-based high-energy melt-cast mixed explosive,whose safety under thermal stimulation is significantly affected by heating conditions and venting area of the warhead.Based on the thermal decomposition reaction characteristics and combustion characteristics of each component of RBOE explosive,the cook-off calculation models of RBOE warhead before and after ignition were established.In addition,closed and vented warheads were designed,as well as fast and slow cook-off test devices.The cook-off characteristics and thermal safety venting area of RBOE warhead were extensively studied.The results showed that the closed RBOE warhead underwent deflagration reaction under both slow and fast cook-off conditions.The calculation result of the shell wall temperature before slow cookoff ignition response of the warhead was 454.06 K,with an error of+1.75%compared to the test result of462.15 K,and the temperature rise rate calculated was in good agreement with the test.The calculated ignition time of RBOE warhead under fast cook-off was 161 s,with an error of+8.8%compared to the test result of 148 s,which verified the accuracy of cook-off model of RBOE warhead before ignition.According to the cook-off calculation model of the warhead after ignition and cook-off test of the vented warhead,it was determined that the thermal safety venting area was 1124.61 mm^(2)for fast cook-off and 530.66 mm~2 for slow cook-off,effectively preventing the reaction of warhead above combustion.Therefore,this study provides a scientific basis for the thermal safety design and evaluation of insensitive warheads.
基金Supported by National Natural Science Foundation of China(No.82160195,No.82460203)Science and Technology Project of Jiangxi Provincial Department of Education(No.GJJ200169)+1 种基金Science and Technology Project of Jiangxi Province Health Commission of Traditional Chinese Medicine(No.2020A0087)Science and Technology Project of Jiangxi Health Commission(No.202130210).
文摘AIM:To elucidate the neuropathological mechanisms underlying diabetic vitreous hemorrhage(DVH)and its correlation with clinical characteristics.METHODS:Twenty-one individuals with DVH(male/female 12/9;mean age 52.29±11.66y)were selected,alongside 21 appropriately matched controls with diabetes mellitus(DM).Voxel-based morphometry(VBM)techniques were employed to identify aberrant functional regions in the brain.Receiver operating characteristic(ROC)curves were utilized for classification based on the average VBM values of the two groups,and Pearson correlation analysis was conducted to assess the relationship between average VBM values in distinct brain regions and clinical manifestations.RESULTS:Relative to the DM controls,DVH patients exhibited reduced VBM values in the right superior temporal pole,the right superior temporal gyrus,the right medial orbital frontal gyrus,and the left superior frontal gyrus.Furthermore,ROC curve analysis of these four brain regions in DVH patients demonstrated a high degree of accuracy,as indicated by the area under the curve.The average VBM value in each of these regions exhibited a negative correlation with both the duration of DVH and the score on the Hospital Anxiety and Depression Scale(HADS).CONCLUSION:Pathological alterations in four distinct brain regions are observed in patients with DVH,potentially reflecting neuropathological changes associated with this condition.
基金Under the auspices of National Natural Science Foundation of China(No.42371315,41901213)Natural Science Foundation of Hubei Province(No.2020CFB856)Project of Changjiang Survey,Planning,Design and Research Co.,Ltd(No.CX2022Z23)。
文摘Investigating the ecological impact of land use change in the context of the construction of national water network project is crucial,as it is imperative for achieving the sustainable development goals of the national water network and guaranteeing regional ecological stability.Using the Danjiangkou Reservoir Area(DRA),China as the study area,this paper first examined the spatiotemporal dynamics of natural landscape patterns and ecosystem service values(ESV)in the DRA from 2000 to 2018 and then investigated the spatial clustering characteristics of the ESV using spatial statistical analysis tools.Finally,the patch-generating land use simulation(PLUS)model was used to simulate the natural landscape and future changes in the ESV of the DRA from 2018 to 2028 under four different development scenarios:business as usual(BAU),economic development(ED),ecological protection(EP),and shoreline protection(SP).The results show that:during 2000-2018,the construction of water facilities had a significant impact on regional land use/land cover(LULC)change,with a 24830 ha increase in watershed area.ESV exhibited an increasing trend,with a significant and growing spatial clustering effect.The transformation of farmland to water bodies led to accelerated ESV growth,while the transformation of forest land to farmland led to a decrease in the ESV.Normalized difference vegetation index(NDVI)had the strongest effect on the ESV.ESV exhibited a continuous increase from 2018 to 2028 under all the simulation scenarios.The EP scenario had the greatest increase in ESV,while the ED scenario had the smallest increase.The findings suggest that projected land use patterns under different scenarios have varied impacts on ecosystem services(ESs)and that the management and planning of the DRA should balance social,economic,ecological,and security benefits.nomic,ecological,and security benefits.
文摘To identify the root causes of heavy metal contamination in soils as well as prevent and control such contamination from its sources,this study explored the accumulation patterns and ecological risks of heavy metals like Cd and Pb in solid waste in mining areas and across the water body,sediment,soil and agricultural product ecosystem surrounding the mining areas.Focusing on the residual solid waste samples in lead-zinc deposits in a certain area of Guizhou Province,along with samples of topsoils,irrigation water,river sediments,and crops from surrounding areas.This study analyzed the distributions of eight heavy metals,i.e.,Cd,As,Cr,Hg,Pb,Zn,Cu,and Ni,in the samples through field surveys and sample tests.Furthermore,this study assessed the contamination levels and ecological risks of heavy metals in soils,sediments,and agricultural products using methods such as the single-factor index,Nemerow composite index,and potential ecological risk assessment.The results indicate that heavy metals in the solid waste samples all exhibited concentrations exceeding their risk screening values,with 60%greater than their risk intervention values.The soils and sediments demonstrate slight and moderate comprehensive ecological risks of heavy metals.The single-factor potential ecological risks of heavy metals in both the soil and sediment samples decreased in the order of Hg,Cd,Pb,As,Cu,Zn,Cr,and Ni,suggesting the same sources of heavy metals in the soils and sediments.Most of the agricultural product samples exhibited over-limit concentrations of heavy metals dominated by Cd,Pb,Ni,and Cr,excluding Hg and As.The agricultural product assessment using the Nemerow composite index reveals that 35%of the agricultural product samples reached the heavy metal contamination level,implying that the agricultural products from farmland around the solid waste dumps have been contaminated with heavy metals.The eight heavy metals in the soil,sediment,and agricultural product samples manifested high coefficients of variation(CVs),indicating pronounced spatial variability.This suggests that their concentrations in soils,sediments,and agricultural products are significantly influenced by human mining activities.Additionally,the agricultural products exhibit strong transport and accumulation capacities for Cd,Cu,and Zn.
基金the Youth Fund of the Chinese Academy of Geological Science (No.9011)
文摘Based on palaeomagnetic studies of the Precambrian gold deposits in the Xiong'ershan area, Henan Province, the authors infer that the ore-forming processes of the Beiling alteration-type gold ore deposit and the Dianfang breccia-type gold ore deposit started in the Proterozoic, and was superimposed by later mineralization, whereas the mineralization age of the Jiguanshan quartz- vein type gold ore deposit is Yanshanian.
基金the Evaluation of soil and water quality and engineering geological survey in Xiong’an New Area Program of China(Grant No.DD20189122)National Natural Science Foundation of China(Grant No.42102294).
文摘The degree and scale of underground space development are growing with the continuous advancement of urbanization in China.The lack of research on the change of the groundwater flow field before and after the development of underground space has led to various problems in the process of underground space development and operation.This paper took the key development zone of the Xiong’an New Area as the study area,and used the Groundwater modeling system software(GMS)to analyse the influence on the groundwater flow field under the point,line,and surface development modes.The main results showed that the underground space development would lead to the expansion and deepening of the cone of depression in the aquifer.The groundwater level on the upstream face of the underground structure would rise,while the water level on the downstream face would drop.The“line”concurrent development has the least impact on the groundwater flow field,and the maximum rise of water level on the upstream side of the underground structure is expected to be approximately 3.05 m.The“surface”development has the greatest impact on the groundwater flow field,and the maximum rise of water level is expected to be 7.17 m.
基金The study was financially supported by the National Natural Science Foundation of China(41807220)the Open Fund Project of Hebei Key Laboratory of Geological Resources and Environment Monitoring and Protection(JCYKT201903)the projects of the China Geological Survey(DD20160239 and DD20189142).
文摘The groundwater level has been continuously decreasing due to climate change and long-time overexploitation in the Xiong’an New Area,North China,which caused the enhanced mixing of groundwater in different aquifers and significant changes in regional groundwater chemistry characteristics.In this study,groundwater and sediment pore-water in drilling cores obtained from a 600 m borehole were investigated to evaluate hydrogeochemical processes in shallow and deep aquifers and paleo-environmental evolution in the past ca.3.10 Ma.Results showed that there was no obvious change overall in chemical composition along the direction of groundwater runoff,but different hydrochemical processes occurred in shallow and deep groundwater in the vertical direction.Shallow groundwater(<150 m)in the Xiong’an New Area was characterized by high salinity(TDS>1000 mg/L)and high concentrations of Mn and Fe,while deep groundwater had better water quality with lower salinity.The high TDS values mostly occurred in aquifers with depth<70 m and>500 m below land surface.Water isotopes showed that aquifer pore-water mostly originated from meteoric water under the influence of evaporation,and aquitard pore-water belonged to Paleo meteoric water.In addition,the evolution of the paleoclimate since 3.10 Ma BP was reconstructed,and four climate periods were determined by theδ18O profiles of pore-water and sporopollen records from sediments at different depths.It can be inferred that the Quaternary Pleistocene(0.78‒2.58 Ma BP)was dominated by the cold and dry climate of the glacial period,with three interglacial intervals of warm and humid climate.What’s more,this study demonstrates the possibilities of the applications of pore-water on the hydrogeochemical study and further supports the finding that pore-water could retain the feature of paleo-sedimentary water.
基金National Natural Science Foundation of China(Nos.41941019,41801391)UK NERC through the Centre for the Observation and Modelling of EarthquakesVolcanoes and Tectonics(No.come30001)。
文摘In 2017,China’s central government approved the national strategy to build Xiong’an New Area(XNA,100 km southwest to Beijing),which was announced as a"millennium strategy"and a"demo area"for a sustainable,modern,and innovative urban model.Xiong’an will draw in as much as$380 billion investment and is expected to help accelerate the development of the wider Beijing-Tianjin-Hebei(Jingjinji)Area.In this paper,present subsidence in the XNA area is investigated using InSAR observations for the first time.The 24 SAR images acquired by European Space Agency’s Sentinel-1 satellites during the period from June 2017 to July 2018 suggest that in the north of Xiong County,the subsidence rate reaches up to 90 mm/y,which is highly correlated with the exploitation of geothermal drilling.As the construction in the XNA area will significantly accelerate and its high-quality development,the InSAR findings could provide valuable information for future sustainable urban planning and underground infrastructure construction.
基金sponsored by the National Key R&D Programof China(grant number 2016YFA0600404)Key Technology of Integration of Meteorological and Application Projects(grant number CMAGJ2015Z16)+1 种基金the Youth Innovation Promotion Association of CAS(grant number 2016075)the Jiangsu Collaborative Innovation Center for Climate Change
文摘On 1 April 2017 China established Xiongan New Area in Hebei Province, which was described as ‘a strategy crucial for a millennium to come'. A point of interest for the public is to be aware of the historical climate change in this new area; however, results from previous global-scale or largerregional-scale averages provide relatively limited information because of the distinct regional differences in climate change. This study analyzes the changes in mean and extreme temperature in this area, based on homogenized daily temperature data for the period 1960–2016. The results show a significant warming in the indices of annual, summer, and winter mean temperature(Tmean), maximum temperature(Tmax), and minimum temperature(Tmin). The linear rate of annual Tmean is 0.34 °C/decade. Temperatures on the hottest day, the warmest night, the coldest day, and the coldest night, every year, all show increasing trends, with the trends in the two nighttime-related indices being significant. An increasing occurrence of warm days, warm nights, hot days, and tropical nights, but a decreasing occurrence of cold days, cold nights, icing days, and frost days, are found, all of which are significant, except for the occurrences of hot days and icing days. A significant extension of the length of the thermal growing season is also found. The magnitudes of change in most of the temperature indices in Xiongan New Area are larger than those of the adjacent Jing-Jin-Ji and North China regional mean. These results could provide valuable information for policymakers, city planners, engineers, and migrants to this new area.
文摘With the establishment and development of Xiong’an New Area in China, more foreign industries and visitors will be attracted to come here. Investigations made in our study show that the environmental English public signs are very important. They can offer directions for foreigners who can’t understand Chinese well because they have these three functions: indication, suggestion and prohibition. In order to help Xiong’an New Area play its “eco card”, the translators are supposed to attach great importance to the translation of environmental English public signs.
文摘After the State Council of China announced the establishment of Xiongan New Area in April 1st,2017,the China Geological Survey(CGS)had actively conducted geological survey projects including engineering geological surveys and surveys of soil quality,groundwater,land subsidence,and shallow geothermal energy.These activities were documented in the Geological Survey Report in Support of the Planning and Construction of the Xiongan New Area,a document intended to be used as a reference for geological information in the general planning of the Xiongan New Area.In 2018,a project named Transparent Xiongan Geological Information Platform was initiated by the CGS in an effort to explore the government-led data and information sharing mechanism.The idea behind the Platform was to aggregate geological information as well as relevant planning and development data from various cities in an all-encompassing urban data platform integrating above ground and underground information.The objective of the Platform is to build a space-air-ground integrated environment and resources monitoring mechanism using the latest technologies such as cloud services and IoT devices to facilitate the development of an“Intelligent Xiongan”.
文摘The purpose of this paper is to study the air pollutants in Xiong’an New Area based on MATLAB grey model [1]. From 2011 to 2016, the results of sulfur dioxide (SO2), nitrogen dioxide (NO2) and inhalable particulate matter (PM1O) detected at monitoring points in the three counties of Xiong’an were analyzed. According to the national environmental air quality standard [2], the air quality in Xiong’an New Area was reasonably evaluated based on grey model in MATLAB. Judging from the weight of pollution factors in the model, sulfur dioxide (SO2) is the controlling factor of air quality in Xiong’an New Area, and the weight of nitrogen dioxide (NO2) gradually increases. The main sources of the three pollutants were obtained by comprehensive data analysis, and a grey model was established according to the mass concentration of the main air pollutants, and the grey forecasting model was tested. The experimental results show that the model can be effectively applied to the forecasting of ambient air quality. On this basis, the present situation of atmospheric environmental quality in Xiong’an New Area and suggestions for improvement are obtained.
基金financially supported by the National Natural Science Foundation of China(grant No.41173065)Ministry of Land and Natural Resources(grant No.201311116)
文摘Xiong’er volcanic rocks cover an area of more than6×104 km2 along the southern margin of North China Craton.The Xiong’er group has been divided,from bottom to top,into the Dagushi,Xushan,Jidanping and
基金supported by the National Key Research and Development Program of China(2021YFC2902004)the National Natural Science Foundation of China(42072284,42027801,and 41877186).
文摘A substantial reduction in groundwater level,exacerbated by coal mining activities,is intensifying water scarcity in western China’s ecologically fragile coal mining areas.China’s national strategic goal of achieving a carbon peak and carbon neutrality has made eco-friendly mining that prioritizes the protection and efficient use of water resources essential.Based on the resource characteristics of mine water and heat hazards,an intensive coal-water-thermal collaborative co-mining paradigm for the duration of the mining process is proposed.An integrated system for the production,supply,and storage of mining companion resources is achieved through technologies such as roof water inrush prevention and control,hydrothermal quality improvement,and deep-injection geological storage.An active preventive and control system achieved by adjusting the mining technology and a passive system centered on multiobjective drainage and grouting treatment are suggested,in accordance with the original geological characteristics and dynamic process of water inrush.By implementing advanced multi-objective drainage,specifically designed to address the“skylight-type”water inrush mode in the Yulin mining area of Shaanxi Province,a substantial reduction of 50%in water drillings and inflow was achieved,leading to stabilized water conditions that effectively ensure subsequent safe coal mining.An integrated-energy complementary model that incorporates the clean production concept of heat utilization is also proposed.The findings indicate a potential saving of 8419 t of standard coal by using water and air heat as an alternative heating source for the Xiaojihan coalmine,resulting in an impressive energy conservation of 50.2%and a notable 24.2%reduction in carbon emissions.The ultra-deep sustained water injection of 100 m^(3)·h^(-1)in a single well would not rupture the formation or cause water leakage,and 7.87×10^(5)t of mine water could be effectively stored in the Liujiagou Formation,presenting a viable method for mine-water management in the Ordos Basin and providing insights for green and low-carbon mining.
文摘BACKGROUND The two-way relationship between periodontitis and type 2 diabetes mellitus(T2DM)is well established.Prolonged hyperglycemia contributes to increased periodontal destruction and severe periodontitis,accentuating diabetic complications.An inflammatory link exists between diabetic retinopathy(DR)and periodontitis,but the studies regarding this association and the role of lipoprotein(a)[Lp(a)]and interleukin-6(IL-6)in these conditions are scarce in the literature.AIM To determine the correlation of periodontal inflamed surface area(PISA)with glycated Hb(HbA1c),serum IL-6 and Lp(a)in T2DM subjects with retinopathy.METHODS This cross-sectional study comprised 40 T2DM subjects with DR and 40 T2DM subjects without DR.All subjects were assessed for periodontal parameters[bleeding on probing(BOP),probing pocket depth,clinical attachment loss(CAL),oral hygiene index-simplified,plaque index(PI)and PISA],and systemic parameters[HbA1c,fasting plasma glucose and postprandial plasma glucose,fasting lipid profile,serum IL-6 and serum Lp(a)].RESULTS The proportion of periodontitis in T2DM with and without DR was 47.5%and 27.5%respectively.Severity of periodontitis,CAL,PISA,IL-6 and Lp(a)were higher in T2DM with DR group compared to T2DM without DR group.Significant difference was observed in the mean percentage of sites with BOP between T2DM with DR(69%)and T2DM without DR(41%),but there was no significant difference in PI(P>0.05).HbA1c was positively correlated with CAL(r=0.351,P=0.001),and PISA(r=0.393,P≤0.001)in study subjects.A positive correlation was found between PISA and IL-6(r=0.651,P<0.0001);PISA and Lp(a)(r=0.59,P<0.001);CAL and IL-6(r=0.527,P<0.0001)and CAL and Lp(a)(r=0.631,P<0.001)among study subjects.CONCLUSION Despite both groups having poor glycemic control and comparable plaque scores,the periodontal parameters were higher in DR as compared to T2DM without DR.Since a bidirectional link exists between periodontitis and DM,the presence of DR may have contributed to the severity of periodontal destruction and periodontitis may have influenced the progression of DR.
基金supported by the “Project funded by the European Union-Next Generation EU”
文摘In the Mediterranean region,despite bamboo being an alien species that can seriously alter plant and ani-mal biocoenosis,the area occupied by bamboo plantations continues to increase,especially for the purpose to seques-ter carbon(C).However,the C dynamics in the soil-plant system when bamboo is grown outside its native area are poorly understood.Here we investigated the C mitigation potential of the fast-growing Moso bamboo(Phyllostachys edulis)introduced in Italy for climate-change mitigation.We analyzed aboveground(AGB)and belowground(as root/shoot ratio)biomass,litter and soil organic C(SOC)at O-15-and 15-30-cm depths in a 4-year-old bamboo plantation in comparison with the former annual cropland on which the bamboo was established.To have an idea of the maximum C stored at an ecosystem level,a natural forest adjacent the two sites was also considered.In the plantation,C accumulation as AGB was stimulated,with 14.8±3.1 Mg C ha^(-1) stored in 3 years;because thinning was done to remove culms from the first year,the mean sequestration rate was 4.9 Mg C ha^(-1) a^(-1).The sequestration rates were high but comparable to other fast-growing tree species in Italy(e.g.,Pinus nigra).SOC was significantly higher in the bamboo plantation than in the cropland only at the 0-15 cm depth,but SOC stock did not differ.Possibly 4 years were not enough time for a clear increase in SOC,or the high nutrient uptake by bamboos might have depleted the soil nutrients,thus inhibiting the soil organic matter formation by bacteria.In comparison,the natural forest had significantly higher C levels in all the pools.For C dynamics at an ecosystem level,the bamboo plantation on the former annual cropland led to substantial C removal from the atmosphere(about 12 Mg C ha^(-1) a^(-1)).However,despite the promising C sequestration rates by bamboo,its introduction should be carefully considered due to potential ecological problems caused by this species in overexploited environments such as the Mediterranean area.
基金the Researchers Supporting Project(RSP2024R347),King Saud University,Riyadh,Saudi Arabia.
文摘The presence of invasive plant species poses a substantial ecological impact,thus comprehensive evaluation of their potential range and risk under the influence of climate change is necessary.This study uses maximum entropy(MaxEnt)modeling to forecast the likelihood of Leucaena leucocephala(Lam.)de Wit invasion in Saudi Arabia under present and future climate change scenarios.Utilizing the MaxEnt modeling,we integrated climatic and soil data to predict habitat suitability for the invasive species.We conducted a detailed analysis of the distribution patterns of the species,using climate variables and ecological factors.We focused on the important influence of temperature seasonality,temperature annual range,and precipitation seasonality.The distribution modeling used robust measures of area under the curve(AUC)and receiver-operator characteristic(ROC)curves,to map the invasion extent,which has a high level of accuracy in identifying appropriate habitats.The complex interaction that influenced the invasion of L.leucocephala was highlighted by the environmental parameters using Jackknife test.Presently,the actual geographic area where L.leucocephala was found in Saudi Arabia was considerably smaller than the theoretical maximum range,suggesting that it had the capacity to expand further.The MaxEnt model exhibited excellent prediction accuracy and produced reliable results based on the data from the ROC curve.Precipitation and temperature were the primary factors influencing the potential distribution of L.leucocephala.Currently,an estimated area of 216,342 km^(2)in Saudi Arabia was at a high probability of invasion by L.leucocephala.We investigated the potential for increased invasion hazards in the future due to climate change scenarios(Shared Socioeconomic Pathways(SSPs)245 and 585).The analysis of key climatic variables,including temperature seasonality and annual range,along with soil properties such as clay composition and nitrogen content,unveiled their substantial influence on the distribution dynamic of L.leucocephala.Our findings indicated a significant expansion of high risk zones.High-risk zones for L.leucocephala invasion in the current climate conditions had notable expansions projected under future climate scenarios,particularly evident in southern Makkah,Al Bahah,Madina,and Asir areas.The results,backed by thorough spatial studies,emphasize the need to reduce the possible ecological impacts of climate change on the spread of L.leucocephala.Moreover,the study provides valuable strategic insights for the management of invasion,highlighting the intricate relationship between climate change,habitat appropriateness,and the risks associated with invasive species.Proactive techniques are suggested to avoid and manage the spread of L.leucocephala,considering its high potential for future spread.This study enhances the overall comprehension of the dynamics of invasive species by combining modeling techniques with ecological knowledge.It also provides valuable information for decision-making to implement efficient conservation and management strategies in response to changing environmental conditions.
文摘Baiyangdian Technology Town initiated in 2015 is the pre -form of Xiong' an New Ar-ea which is both a national new area and a national special economic zone. Xiong' an New Areacan be regarded as an exploration of alternative mechanism of metropolitan space which fits the ruleof urban development. Xiong' an New Area is a national new area of the highest rank approved inthe process of National New Urbanization Plan. Therefore, the strategic positioning is supposed tobe fit in the new urbanization strategy and to have major leading and prototype functions in solvingthe problems of old style urbanization. Xiong' an New Area is to undertake great preas in preventingthe over gathering, which is a major task and principle of the planning.