With the rapid social and economic development of the Taihu region, Taihu Lake now faces an increasingly severe eutrophication problem. Pollution from surrounding catchments contributes greatly to the eutrophication o...With the rapid social and economic development of the Taihu region, Taihu Lake now faces an increasingly severe eutrophication problem. Pollution from surrounding catchments contributes greatly to the eutrophication of water bodies in the region. Investigation of surface flow and associated mass transport for the Xitiaoxi catchment is of a significant degree of importance as the Xitiaoxi catchment is one of the major catchments within the Taihu region. A SWAT-based distributed hydrological model was established for the Xitiaoxi catchment. The model was calibrated and verified using hydrometeorological data from 1988 to 2001. The results indicate that the modeled daily and annual stream flow match the observed data both in the calibration period and the verification period, with a linear regression coefficient R2 and a coefficient e for modeled daily stream flow greater than 0.8 at Hengtangcun and Fanjiacun gauge stations. The results show that the runoff process in the Xitiaoxi catchment is affected both by rainfall and human activities (e.g., reservoirs and polder areas). Moreover, the human activities weaken flood peaks more noticeably during rainstorms. The Water balance analysis reveals the percentages of precipitation made up by surface flow, evapotranspiration, groundwater recharge' and the change of soil storage, all of which are considered useful to the further understanding of the hydrological processes in the Xitiaoxi catchment. This study provides a good base for further studies in mass transport modeling and comparison of modeling results from similar hydrological models.展开更多
The impact of climate change on streamflow in the Xitiaoxi catchment is assessed by using VIC (variable infiltration capacity) model coupled with PRECIS (providing regional climate for impacts studies). Results sh...The impact of climate change on streamflow in the Xitiaoxi catchment is assessed by using VIC (variable infiltration capacity) model coupled with PRECIS (providing regional climate for impacts studies). Results show that the VIC model is adaptable for the study area. Both deterministic coefficient and NashSuttcliffe efficiency coefficient are greater than 0.75, with a good agreement between observed and simulated discharge. The runoff will increase in the future, especially during flood seasons. The magnitude of floods in the future (2021-2050) under A2 and B2 scenarios will be greater than that during the baseline period (1961-1990), but it may not exceed that during the 1990s.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 40471018)the National Basic Research Program of China (973 Program, Grant No. 2002 CB412310)Hundred Talents Programme of the Chinese Academy of Sciences
文摘With the rapid social and economic development of the Taihu region, Taihu Lake now faces an increasingly severe eutrophication problem. Pollution from surrounding catchments contributes greatly to the eutrophication of water bodies in the region. Investigation of surface flow and associated mass transport for the Xitiaoxi catchment is of a significant degree of importance as the Xitiaoxi catchment is one of the major catchments within the Taihu region. A SWAT-based distributed hydrological model was established for the Xitiaoxi catchment. The model was calibrated and verified using hydrometeorological data from 1988 to 2001. The results indicate that the modeled daily and annual stream flow match the observed data both in the calibration period and the verification period, with a linear regression coefficient R2 and a coefficient e for modeled daily stream flow greater than 0.8 at Hengtangcun and Fanjiacun gauge stations. The results show that the runoff process in the Xitiaoxi catchment is affected both by rainfall and human activities (e.g., reservoirs and polder areas). Moreover, the human activities weaken flood peaks more noticeably during rainstorms. The Water balance analysis reveals the percentages of precipitation made up by surface flow, evapotranspiration, groundwater recharge' and the change of soil storage, all of which are considered useful to the further understanding of the hydrological processes in the Xitiaoxi catchment. This study provides a good base for further studies in mass transport modeling and comparison of modeling results from similar hydrological models.
基金Supported by China/UK Scientific Cooperation Project from the Ministry of Science and Technology of China (2006DFA71390)Open Research Foundation of China Institute of Water Resources and Hydro-power Research
文摘The impact of climate change on streamflow in the Xitiaoxi catchment is assessed by using VIC (variable infiltration capacity) model coupled with PRECIS (providing regional climate for impacts studies). Results show that the VIC model is adaptable for the study area. Both deterministic coefficient and NashSuttcliffe efficiency coefficient are greater than 0.75, with a good agreement between observed and simulated discharge. The runoff will increase in the future, especially during flood seasons. The magnitude of floods in the future (2021-2050) under A2 and B2 scenarios will be greater than that during the baseline period (1961-1990), but it may not exceed that during the 1990s.