Land use/cover change (LUCC) is one of the main boundary conditions which influence many hydrologic processes. In view of the importance of Taihu Lake Watershed in China and the urgency of discovering the impacts of L...Land use/cover change (LUCC) is one of the main boundary conditions which influence many hydrologic processes. In view of the importance of Taihu Lake Watershed in China and the urgency of discovering the impacts of LUCC on storm runoff, two flood events under five land cover scenarios in the Xitiaoxi River Basin of the upstream of Taihu Lake watershed were simulated by distributed hydrologic modeling system HEC-HMS. The influences of each land cover on storm runoff were discussed. It was concluded that under the same rainstorm the ascending order of runoff coefficient and peak flow produced by the 5 different land covers were woodland, shrub, grassland, arable land, and built-up land; the descending order of swelling time were woodland, shrub, grassland, arable land, and built-up land. Scenario of built-up land was the first to reach peak flow, then arable land, grassland, shrub, and woodland. There were close relationships between the runoff coefficients produced by the 5 different land covers. The degrees of impacts on runoff coefficient of land cover change modes were sorted by descending: woodland to built-up land, shrub to built-up land, grassland to built-up land, arable land to built-up land, woodland to arable land, shrub to arable land, arable land to grassland, shrub to grassland, grassland to arable land, and woodland to shrub. Urbanization will contribute to flood disaster, while forestation will mitigate flood disaster.展开更多
Water yield calculation and mapping are of great importance to water resource planning and management and hydropower station construction. A water yield model based on InVEST was employed to estimate water runoff in t...Water yield calculation and mapping are of great importance to water resource planning and management and hydropower station construction. A water yield model based on InVEST was employed to estimate water runoff in the Xitiaoxi River basin. The data included land use and land cover, average annual precipitation and potential evapotranspiration, soil depth, and plant available water content. In order to test model accuracy the natural runoff of Xitiaoxi River was estimated based on linear regression relation of rainfall-runoff in a ‘reference period’. After repeated validation, when the Z value was 6.5 the water yield was 8.30 E+8 m3 and this was a smaller difference with natural runoff. From the distribution of water yield, south and southwestern areas of the watershed had higher water yield volumes per hectare.展开更多
Climate change and human activity can cause remarkable hydrological variation.Traits of hydrological series such as runoff before and after the change points could be significantly different,so the calculation of inst...Climate change and human activity can cause remarkable hydrological variation.Traits of hydrological series such as runoff before and after the change points could be significantly different,so the calculation of instream ecological water requirements(EWRs)is confronted with more challenges.Taking the Xitiaoxi River(XTXR)in the upper reach of the Taihu Lake Basin as an example,this paper investigates the calculation of EWRs using the range of variability approach(RVA)under changing environment.The change point diagnosis of the natural and observed runoff series are conducted for XTXR.Then,differences in the hydrological alternation indicators and instream EWRs processes obtained from various daily runoff series are compared.It was found that the natural and observed annual runoff series in XTXR from 1957 to 2018 both show significant variations,and the change points are in 2007 and 1999 respectively.If runoff data before the change points or all runoff data are used,the instream EWRs obtained from natural runoff are significantly lower than those obtained from the observed runoff.At the monthly time step,EWRs differences within a year mainly occurred from May to August.Also,calculation results of the instream EWRs are strongly related to the selected period of runoff series.The EWRs obtained using runoff series after the change points have rather acute fluctuation within a year.Therefore,when the RVA method is used under changing environment,the instream EWRs should be prudently determined by comparing different calculation results on the basis of river runoff restoration and variability analysis.To a certain extent,this paper enriches our understanding about the hydrological method for EWRs estimation,and proposes new ideas for future research on EWRs.展开更多
针对流域土地利用变化所引起的径流空间变异问题,论文以太湖上游西苕溪流域为例,基于SWAT模型(Soil and Water Assessment Tool)模拟的不同土地利用情景下月尺度径流过程,通过GWR模型(Geographically weighted regression)在空间上定量...针对流域土地利用变化所引起的径流空间变异问题,论文以太湖上游西苕溪流域为例,基于SWAT模型(Soil and Water Assessment Tool)模拟的不同土地利用情景下月尺度径流过程,通过GWR模型(Geographically weighted regression)在空间上定量评估了土地利用/覆被变化对流域径流过程的影响。结果表明:径流变化在流域空间分布上存在一定非平稳性,其与子流域内面积变化较大的土地利用类型相关性显著,其中城镇用地影响最大,林草地和耕地影响次之。径流变化对城镇用地的空间响应关系表现为由上游到下游逐渐增强,而对林草地和耕地的响应关系表现为从流域上游到下游逐渐减弱。对比发现,多因子GWR模型相对于单因子GWR模型更适合综合分析径流对土地利用/覆被变化的空间响应关系。展开更多
基金Under the auspices of Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX3-SW-331)
文摘Land use/cover change (LUCC) is one of the main boundary conditions which influence many hydrologic processes. In view of the importance of Taihu Lake Watershed in China and the urgency of discovering the impacts of LUCC on storm runoff, two flood events under five land cover scenarios in the Xitiaoxi River Basin of the upstream of Taihu Lake watershed were simulated by distributed hydrologic modeling system HEC-HMS. The influences of each land cover on storm runoff were discussed. It was concluded that under the same rainstorm the ascending order of runoff coefficient and peak flow produced by the 5 different land covers were woodland, shrub, grassland, arable land, and built-up land; the descending order of swelling time were woodland, shrub, grassland, arable land, and built-up land. Scenario of built-up land was the first to reach peak flow, then arable land, grassland, shrub, and woodland. There were close relationships between the runoff coefficients produced by the 5 different land covers. The degrees of impacts on runoff coefficient of land cover change modes were sorted by descending: woodland to built-up land, shrub to built-up land, grassland to built-up land, arable land to built-up land, woodland to arable land, shrub to arable land, arable land to grassland, shrub to grassland, grassland to arable land, and woodland to shrub. Urbanization will contribute to flood disaster, while forestation will mitigate flood disaster.
基金National Major Water Pollution Control Project(No.2008ZX07526-007)
文摘Water yield calculation and mapping are of great importance to water resource planning and management and hydropower station construction. A water yield model based on InVEST was employed to estimate water runoff in the Xitiaoxi River basin. The data included land use and land cover, average annual precipitation and potential evapotranspiration, soil depth, and plant available water content. In order to test model accuracy the natural runoff of Xitiaoxi River was estimated based on linear regression relation of rainfall-runoff in a ‘reference period’. After repeated validation, when the Z value was 6.5 the water yield was 8.30 E+8 m3 and this was a smaller difference with natural runoff. From the distribution of water yield, south and southwestern areas of the watershed had higher water yield volumes per hectare.
基金National Key Research and Development Program of China,No.2018YFC1508204Special Program for Public Welfare Industrial Scientific Research of the Ministry of Water Resources,No.201401015,No.201501014National Natural Science Foundation of China,No.51509157。
文摘Climate change and human activity can cause remarkable hydrological variation.Traits of hydrological series such as runoff before and after the change points could be significantly different,so the calculation of instream ecological water requirements(EWRs)is confronted with more challenges.Taking the Xitiaoxi River(XTXR)in the upper reach of the Taihu Lake Basin as an example,this paper investigates the calculation of EWRs using the range of variability approach(RVA)under changing environment.The change point diagnosis of the natural and observed runoff series are conducted for XTXR.Then,differences in the hydrological alternation indicators and instream EWRs processes obtained from various daily runoff series are compared.It was found that the natural and observed annual runoff series in XTXR from 1957 to 2018 both show significant variations,and the change points are in 2007 and 1999 respectively.If runoff data before the change points or all runoff data are used,the instream EWRs obtained from natural runoff are significantly lower than those obtained from the observed runoff.At the monthly time step,EWRs differences within a year mainly occurred from May to August.Also,calculation results of the instream EWRs are strongly related to the selected period of runoff series.The EWRs obtained using runoff series after the change points have rather acute fluctuation within a year.Therefore,when the RVA method is used under changing environment,the instream EWRs should be prudently determined by comparing different calculation results on the basis of river runoff restoration and variability analysis.To a certain extent,this paper enriches our understanding about the hydrological method for EWRs estimation,and proposes new ideas for future research on EWRs.
文摘针对流域土地利用变化所引起的径流空间变异问题,论文以太湖上游西苕溪流域为例,基于SWAT模型(Soil and Water Assessment Tool)模拟的不同土地利用情景下月尺度径流过程,通过GWR模型(Geographically weighted regression)在空间上定量评估了土地利用/覆被变化对流域径流过程的影响。结果表明:径流变化在流域空间分布上存在一定非平稳性,其与子流域内面积变化较大的土地利用类型相关性显著,其中城镇用地影响最大,林草地和耕地影响次之。径流变化对城镇用地的空间响应关系表现为由上游到下游逐渐增强,而对林草地和耕地的响应关系表现为从流域上游到下游逐渐减弱。对比发现,多因子GWR模型相对于单因子GWR模型更适合综合分析径流对土地利用/覆被变化的空间响应关系。