The Xitieshan lead-zinc deposit is located at the northern margin of the Qaidam Basin, Qinghai Province, China, and had developed a complete marine sedimentary-exhalative system. Our preliminary study of ore-forming f...The Xitieshan lead-zinc deposit is located at the northern margin of the Qaidam Basin, Qinghai Province, China, and had developed a complete marine sedimentary-exhalative system. Our preliminary study of ore-forming fluids shows that fluid inclusions in quartz from altered stockwork rocks that represent the pipe facies have a wide range of temperature and salinity. The intense fluid activities are characteristics of the pipe facies of the exhalative system. Fluid inclusions in carbonates near the unstratified ore bodies hosted in the thick-bedded marble which represents vent-proximal facies are large in size and have moderate to high temperatures. They represent unerupted sub-seafloor fluid activity. Fluids in altered stockwork rocks and carbonates have similar H20-NaCI-CO2 system, both belonging to the sedimentary-exhalative system. The fluids migrate from the pipe facies to the unstratified ore bodies. Boiling of the fluids causes the separation of CO2 vapor and liquid H2O. When the fluids migrate into the unconsolidated thick-bedded marble, the escape of CO2, decreasing temperature and pressure as well as some involvement of seawater into the fluids result in the unmixing of fluids with high and low salinity and deposition of ore-forming materials. The two unmixed fluids were trapped in unconsolidated carbonates and the ore-forming materials were deposited in the unconsolidated carbonates to form the sedimentary-exhalative type unstratified ore bodies. The oreforming temperature of unstratified ore bodies is up to high temperature indicating that there is a huge ore-forming potential in its deep.展开更多
The Tanjianshan Group,which was previously divided into a,b,c and d formations,has been controversial for a long time.It mainly distributes in the northern margin of Qaidam Basin and is an important early Paleozoic gr...The Tanjianshan Group,which was previously divided into a,b,c and d formations,has been controversial for a long time.It mainly distributes in the northern margin of Qaidam Basin and is an important early Paleozoic greenschist facies metamorphic volcanic sedimentary rock formation.Detailed field investigation and zircon LA-ICPMS U-Pb dating of the key strata suggest that the original lower part of a Formation (a-1) versus the original middle upper of d Formation (d-3 and d-4),the original upper part of a Formation (a-2) and b Formation versus the original lower part of d Formation (d-1 and d-2) of Tanjianshan Group are contemporaneous heterotopic facies volcanicclasolite deposit,respectively.The former formations formed during the middle-late Ordovician (463-458 Ma),while the latter ones formed in the late Ordovician (about 445 Ma).The original c formation of Tanjianshan Group,which formed after 430 Ma,is similar to the Maoniushan Formation of Kunlun Mountains and north Qaidam Basin.According to the rules of stratigraphic division and naming,new stratum formations of Tanjianshan Group are re-built and divided into Duancenggou (O1-2td),Zhongjiangou (O2-3tz) and Xitieshan (O3tx) formations.The original c Formation is separated from Tanjianshan Group and is renamed as the Wuminggou Formation (S3-D1W),which shows a discordant contact with underlying Tanjianshan Group and overlying Amunike Formation (D3a).The zircon U-Pb age frequency spectrogram of Tanjianshan Group indicates three prominent peaks of 430 Ma,460 Ma and 908 Ma,which is consistent with the metamorphic and magmatic crystallization ages obtained from para-and orthogneisses in north Qaidam HP-UHP metamorphic belt,implying that strong Caledonian and Jinningian tectonic and magmatic events have ever happened in North Qaidam.展开更多
柴北缘锡铁山地区长英质(花岗)片麻岩普遍经历了不同程度的部分熔融作用,常见新生的花岗质浅色体呈层状、脉状或网络状分布于长英质片麻岩中,并显示出混合岩化的特征。岩相学观察结果显示长英质片麻岩保留了关键的深熔作用显微结构证...柴北缘锡铁山地区长英质(花岗)片麻岩普遍经历了不同程度的部分熔融作用,常见新生的花岗质浅色体呈层状、脉状或网络状分布于长英质片麻岩中,并显示出混合岩化的特征。岩相学观察结果显示长英质片麻岩保留了关键的深熔作用显微结构证据:(1)石榴石内部发育有钾长石、石英和斜长石组成的矿物包裹体;(2)长石颗粒边界出现由石英+钾长石±斜长石±白云母组成的楔形矿物集合体;(3)云母颗粒边界发育尖锐的、不规则的微斜长石,而且云母边界溶蚀明显,形成锯齿状不规则的边界;(4)石英、斜长石或钾长石颗粒边界发育圆珠状(string of beads)结构,而且颗粒边界或三联点中尖锐状微斜长石与周围矿物的形成较小的二面角。阴极发光图像和锆石U-Pb定年结果表明花岗质浅色体中的锆石具有明显的核、幔、边三层结构,而且具有明显不同的年龄结果。发光较强的继承性锆石岩浆核部的206Pb/238U年龄约为~910Ma,而且具有高的Th/U比值;弱发光的变质锆石幔的206Pb/238U年龄结果约为~450Ma。新生的锆石增生边中等程度发光,并发育震荡环带和较低的Th/U比值,与世界典型地区混合岩中深熔锆石的特征十分相似,其206Pb/238U年龄结果为432±3Ma。野外关系、显微结构特征和年代学的研究结果显示柴北缘锡铁山地区花岗质浅色体可能是其寄主岩石长英质片麻岩在折返到高压麻粒岩相条件下深熔作用的产物,而且白云母的脱水熔融是引发岩石发生深熔作用的主要机制。柴北缘地区已有的资料综合研究表明,大陆深俯冲板片在俯冲/碰撞和折返过程中可能经历了多重深熔作用。展开更多
基金This research is supported by the National Natural Science Foundation of China (No. 40672061) ; 'National Science Support Plan Program' (2006BAB01A06) ; 'National Basic Research Program of China' (No.2007CB411304 No. 2001 CB409806).
文摘The Xitieshan lead-zinc deposit is located at the northern margin of the Qaidam Basin, Qinghai Province, China, and had developed a complete marine sedimentary-exhalative system. Our preliminary study of ore-forming fluids shows that fluid inclusions in quartz from altered stockwork rocks that represent the pipe facies have a wide range of temperature and salinity. The intense fluid activities are characteristics of the pipe facies of the exhalative system. Fluid inclusions in carbonates near the unstratified ore bodies hosted in the thick-bedded marble which represents vent-proximal facies are large in size and have moderate to high temperatures. They represent unerupted sub-seafloor fluid activity. Fluids in altered stockwork rocks and carbonates have similar H20-NaCI-CO2 system, both belonging to the sedimentary-exhalative system. The fluids migrate from the pipe facies to the unstratified ore bodies. Boiling of the fluids causes the separation of CO2 vapor and liquid H2O. When the fluids migrate into the unconsolidated thick-bedded marble, the escape of CO2, decreasing temperature and pressure as well as some involvement of seawater into the fluids result in the unmixing of fluids with high and low salinity and deposition of ore-forming materials. The two unmixed fluids were trapped in unconsolidated carbonates and the ore-forming materials were deposited in the unconsolidated carbonates to form the sedimentary-exhalative type unstratified ore bodies. The oreforming temperature of unstratified ore bodies is up to high temperature indicating that there is a huge ore-forming potential in its deep.
基金funded by the National Natural Science Foundation of China (41173066, 41272110 and 41072070)Project Fund of Western Mining Corporation
文摘The Tanjianshan Group,which was previously divided into a,b,c and d formations,has been controversial for a long time.It mainly distributes in the northern margin of Qaidam Basin and is an important early Paleozoic greenschist facies metamorphic volcanic sedimentary rock formation.Detailed field investigation and zircon LA-ICPMS U-Pb dating of the key strata suggest that the original lower part of a Formation (a-1) versus the original middle upper of d Formation (d-3 and d-4),the original upper part of a Formation (a-2) and b Formation versus the original lower part of d Formation (d-1 and d-2) of Tanjianshan Group are contemporaneous heterotopic facies volcanicclasolite deposit,respectively.The former formations formed during the middle-late Ordovician (463-458 Ma),while the latter ones formed in the late Ordovician (about 445 Ma).The original c formation of Tanjianshan Group,which formed after 430 Ma,is similar to the Maoniushan Formation of Kunlun Mountains and north Qaidam Basin.According to the rules of stratigraphic division and naming,new stratum formations of Tanjianshan Group are re-built and divided into Duancenggou (O1-2td),Zhongjiangou (O2-3tz) and Xitieshan (O3tx) formations.The original c Formation is separated from Tanjianshan Group and is renamed as the Wuminggou Formation (S3-D1W),which shows a discordant contact with underlying Tanjianshan Group and overlying Amunike Formation (D3a).The zircon U-Pb age frequency spectrogram of Tanjianshan Group indicates three prominent peaks of 430 Ma,460 Ma and 908 Ma,which is consistent with the metamorphic and magmatic crystallization ages obtained from para-and orthogneisses in north Qaidam HP-UHP metamorphic belt,implying that strong Caledonian and Jinningian tectonic and magmatic events have ever happened in North Qaidam.
文摘柴北缘锡铁山地区长英质(花岗)片麻岩普遍经历了不同程度的部分熔融作用,常见新生的花岗质浅色体呈层状、脉状或网络状分布于长英质片麻岩中,并显示出混合岩化的特征。岩相学观察结果显示长英质片麻岩保留了关键的深熔作用显微结构证据:(1)石榴石内部发育有钾长石、石英和斜长石组成的矿物包裹体;(2)长石颗粒边界出现由石英+钾长石±斜长石±白云母组成的楔形矿物集合体;(3)云母颗粒边界发育尖锐的、不规则的微斜长石,而且云母边界溶蚀明显,形成锯齿状不规则的边界;(4)石英、斜长石或钾长石颗粒边界发育圆珠状(string of beads)结构,而且颗粒边界或三联点中尖锐状微斜长石与周围矿物的形成较小的二面角。阴极发光图像和锆石U-Pb定年结果表明花岗质浅色体中的锆石具有明显的核、幔、边三层结构,而且具有明显不同的年龄结果。发光较强的继承性锆石岩浆核部的206Pb/238U年龄约为~910Ma,而且具有高的Th/U比值;弱发光的变质锆石幔的206Pb/238U年龄结果约为~450Ma。新生的锆石增生边中等程度发光,并发育震荡环带和较低的Th/U比值,与世界典型地区混合岩中深熔锆石的特征十分相似,其206Pb/238U年龄结果为432±3Ma。野外关系、显微结构特征和年代学的研究结果显示柴北缘锡铁山地区花岗质浅色体可能是其寄主岩石长英质片麻岩在折返到高压麻粒岩相条件下深熔作用的产物,而且白云母的脱水熔融是引发岩石发生深熔作用的主要机制。柴北缘地区已有的资料综合研究表明,大陆深俯冲板片在俯冲/碰撞和折返过程中可能经历了多重深熔作用。