The fault deformation observed in 18 years after the Tangshan earthquake on the deformation station located on the surface fissure of the seismogenic fault is introduced. The results show that the vertical and horizo...The fault deformation observed in 18 years after the Tangshan earthquake on the deformation station located on the surface fissure of the seismogenic fault is introduced. The results show that the vertical and horizontal deformations of the seismogenic fault were concentrated within 7 years after the earthquake and the year of 1983 was the turning year of postseismic deformation. The deformation shown by large area levelings is consistent with the intensity level of fault deformation. At present, a relaxation state appears in which stress is not easy for stress to accumulate and there is no probability of stronger earthquake occurrence in the near future.展开更多
This study analyzes data regarding cross-fault deformations within the seismogenic zone of the 2016 Qinghai Menyuan Ms6.4 earthquake and its surrounding area. The results showed that the tendency anomaly sites near th...This study analyzes data regarding cross-fault deformations within the seismogenic zone of the 2016 Qinghai Menyuan Ms6.4 earthquake and its surrounding area. The results showed that the tendency anomaly sites near the epicenter had relatively long anomaly durations prior to the earthquake, while sudden-jumping anomaly sites started to increase in the middle eastern Qilian Mountains approximately a year before the earthquake and continued to increase and migrate towards the vicinity of the epicenter two to six months before the earthquake. Intensive observations a few days after the earthquake indicated that abnormal returns and turns before the earthquake were significant, but all had small amplitudes, and the coseismic effect was generally minor. In addition, the post-seismic tendency analysis of individual cross faults in the Qilian Mountain fault zone revealed an accelerating thrust tendency at all cross-fault sites in the middle Qilian Mountains after the 2008 Wenchuan Ms8.0 earthquake. This indicates that the Wenchuan mega-earthquake exerted a great impact on the dynamic environment of the northeastern margin of the Qinghai-Tibet plate and significantly enhanced the extrusion effect of the Indian plate on the middle Qilian Mountains, generating favorable conditions for the occurrence of Menyuan thrust earthquakes.展开更多
Based on the data from repeated precise leveling and across-fault deformation measurements carried out in recent 30 years and the analyzed results from GPS observations made in recent years along the northeastern marg...Based on the data from repeated precise leveling and across-fault deformation measurements carried out in recent 30 years and the analyzed results from GPS observations made in recent years along the northeastern margin of Qinghai-Xizang block, and combined with the geological structures and seismic activities, some characteristics in regional tectonic deformation and strong earthquake development are studied and approached preliminarily. The results show that: a) The space-time distribution of current tectonic deformation in this area is inhomogeneous with relatively intensive tectonic deformation in the vicinity of main boundary faults and weak deformation in the farther areas. The intensity of vertical differential movement and the deformation status vary with time, and the horizontal movement and deformation are characterized by apparent compression and strike-slip. b) The tectonic stress field generated by the NE-trending continuous compressive movement of Qinghai-Xizang block due to the northward press and collision of India plate is the principal stress for the tectonic deformation and earthquake development in this area. The evolution of space-time distribution of tectonic deformation and seismicity is closely related to the block activity and dynamic evolution of regional tectonic stress field. c) The vertical deformation uplift and high-gradient deformation zones and the obvious fault deformation anomaly appeared along the boundaries of tectonic blocks can be considered as the indicators of hindered block motion and intensified tectonic stress field for strong earthquake development. Usually, the above-mentioned phenomena would be followed by the seismicity of M6.0, but the earthquake might not occur in the place with the maximum movement. The zones with the fault deformation anomaly characterized by tendencious accumulation acceleration turning and the surrounding areas might be the positions for accumulation of strain energy and development and occurrence of strong earthquakes.展开更多
Using GPS observations of horizontal movement from 2001 to 2003 and the cross-fault mobile short-levelling data of 1988~2003, and with the aid of the improved negative dislocation model and the time-varying curve of ...Using GPS observations of horizontal movement from 2001 to 2003 and the cross-fault mobile short-levelling data of 1988~2003, and with the aid of the improved negative dislocation model and the time-varying curve of strain intensity ratio of fault deformation, the regional tectonic deformation background and medium- and short-term precursors related to the preparation of the Minle-Shandan earthquakes of M S6.1 and M S5.8 on October 25, 2003 are investigated. The results reveal that, under the background of the wide-range deformation adjustment, short-term relaxation and recovery caused by the Kunlun Mountains earthquake of M S8.1, the hypocenters of the earthquakes are located on the north edge of the shear stress enhancement zone between the compressional locked segments of block boundary fault, a place which may represent an accelerated strain accumulation. An obvious anomaly of strain intensity ratio appeared in short-levelling measurements crossing over the fault at the Shihuiyaokou site, the closest to the epicenters, 3 months before the occurrence of the earthquakes. In addition, the variation in number of anomalies from 10-odd days to months before the earthquakes in the entire monitoring area and the anomaly concentration and local enhancement relative to near source in the 3 months before the earthquakes are regarded to be precursors to the two events.展开更多
通过对2008年5月12日发生的汶川8.0级地震的发震构造——中央断裂映秀—南坝段地震地表破裂、地表形变及断裂上余震迁移等特征的详细调查和分析,结果表明:(1)自映秀至南坝,断层活动方式表现为由逆冲逐渐过渡为逆冲-右旋走滑、再到走滑...通过对2008年5月12日发生的汶川8.0级地震的发震构造——中央断裂映秀—南坝段地震地表破裂、地表形变及断裂上余震迁移等特征的详细调查和分析,结果表明:(1)自映秀至南坝,断层活动方式表现为由逆冲逐渐过渡为逆冲-右旋走滑、再到走滑分量与逆冲分量大致相当,同时断层两盘滑动伴有相对弱旋转活动;(2)在断层总体走向NE向、逆冲为主兼右旋走滑活动方式下,局部表现为走向NW向、逆冲为主兼左旋走滑活动方式;(3)地震裂缝与单侧破裂面关系,以及地表重叠缩短形变特征表明,断层活动、应变能释放是在近EW向区域构造应力及NE向局部构造应力综合作用下的结果.依据断层沿线地表裂缝产状的变化,粗略推出映秀至南坝段主应力方向由SEE向NEE方向变化,与前人使用CAP(Cut and Pasate)方法求出的主余震源机制方向基本一致.展开更多
文摘The fault deformation observed in 18 years after the Tangshan earthquake on the deformation station located on the surface fissure of the seismogenic fault is introduced. The results show that the vertical and horizontal deformations of the seismogenic fault were concentrated within 7 years after the earthquake and the year of 1983 was the turning year of postseismic deformation. The deformation shown by large area levelings is consistent with the intensity level of fault deformation. At present, a relaxation state appears in which stress is not easy for stress to accumulate and there is no probability of stronger earthquake occurrence in the near future.
基金supported by the Youth Seismic Regime Tracking Project in the Year of 2016,China Earthquake Administration(2016010217)the Special Earthquake Research Project granted by the China Earthquake Administration(201508009)
文摘This study analyzes data regarding cross-fault deformations within the seismogenic zone of the 2016 Qinghai Menyuan Ms6.4 earthquake and its surrounding area. The results showed that the tendency anomaly sites near the epicenter had relatively long anomaly durations prior to the earthquake, while sudden-jumping anomaly sites started to increase in the middle eastern Qilian Mountains approximately a year before the earthquake and continued to increase and migrate towards the vicinity of the epicenter two to six months before the earthquake. Intensive observations a few days after the earthquake indicated that abnormal returns and turns before the earthquake were significant, but all had small amplitudes, and the coseismic effect was generally minor. In addition, the post-seismic tendency analysis of individual cross faults in the Qilian Mountain fault zone revealed an accelerating thrust tendency at all cross-fault sites in the middle Qilian Mountains after the 2008 Wenchuan Ms8.0 earthquake. This indicates that the Wenchuan mega-earthquake exerted a great impact on the dynamic environment of the northeastern margin of the Qinghai-Tibet plate and significantly enhanced the extrusion effect of the Indian plate on the middle Qilian Mountains, generating favorable conditions for the occurrence of Menyuan thrust earthquakes.
基金Foundation item: The Development Program on National Key Basic Researches under the Project Mechanism and Prediction of Continental strong Earthquakes (G1998040703)
文摘Based on the data from repeated precise leveling and across-fault deformation measurements carried out in recent 30 years and the analyzed results from GPS observations made in recent years along the northeastern margin of Qinghai-Xizang block, and combined with the geological structures and seismic activities, some characteristics in regional tectonic deformation and strong earthquake development are studied and approached preliminarily. The results show that: a) The space-time distribution of current tectonic deformation in this area is inhomogeneous with relatively intensive tectonic deformation in the vicinity of main boundary faults and weak deformation in the farther areas. The intensity of vertical differential movement and the deformation status vary with time, and the horizontal movement and deformation are characterized by apparent compression and strike-slip. b) The tectonic stress field generated by the NE-trending continuous compressive movement of Qinghai-Xizang block due to the northward press and collision of India plate is the principal stress for the tectonic deformation and earthquake development in this area. The evolution of space-time distribution of tectonic deformation and seismicity is closely related to the block activity and dynamic evolution of regional tectonic stress field. c) The vertical deformation uplift and high-gradient deformation zones and the obvious fault deformation anomaly appeared along the boundaries of tectonic blocks can be considered as the indicators of hindered block motion and intensified tectonic stress field for strong earthquake development. Usually, the above-mentioned phenomena would be followed by the seismicity of M6.0, but the earthquake might not occur in the place with the maximum movement. The zones with the fault deformation anomaly characterized by tendencious accumulation acceleration turning and the surrounding areas might be the positions for accumulation of strain energy and development and occurrence of strong earthquakes.
文摘Using GPS observations of horizontal movement from 2001 to 2003 and the cross-fault mobile short-levelling data of 1988~2003, and with the aid of the improved negative dislocation model and the time-varying curve of strain intensity ratio of fault deformation, the regional tectonic deformation background and medium- and short-term precursors related to the preparation of the Minle-Shandan earthquakes of M S6.1 and M S5.8 on October 25, 2003 are investigated. The results reveal that, under the background of the wide-range deformation adjustment, short-term relaxation and recovery caused by the Kunlun Mountains earthquake of M S8.1, the hypocenters of the earthquakes are located on the north edge of the shear stress enhancement zone between the compressional locked segments of block boundary fault, a place which may represent an accelerated strain accumulation. An obvious anomaly of strain intensity ratio appeared in short-levelling measurements crossing over the fault at the Shihuiyaokou site, the closest to the epicenters, 3 months before the occurrence of the earthquakes. In addition, the variation in number of anomalies from 10-odd days to months before the earthquakes in the entire monitoring area and the anomaly concentration and local enhancement relative to near source in the 3 months before the earthquakes are regarded to be precursors to the two events.
文摘通过对2008年5月12日发生的汶川8.0级地震的发震构造——中央断裂映秀—南坝段地震地表破裂、地表形变及断裂上余震迁移等特征的详细调查和分析,结果表明:(1)自映秀至南坝,断层活动方式表现为由逆冲逐渐过渡为逆冲-右旋走滑、再到走滑分量与逆冲分量大致相当,同时断层两盘滑动伴有相对弱旋转活动;(2)在断层总体走向NE向、逆冲为主兼右旋走滑活动方式下,局部表现为走向NW向、逆冲为主兼左旋走滑活动方式;(3)地震裂缝与单侧破裂面关系,以及地表重叠缩短形变特征表明,断层活动、应变能释放是在近EW向区域构造应力及NE向局部构造应力综合作用下的结果.依据断层沿线地表裂缝产状的变化,粗略推出映秀至南坝段主应力方向由SEE向NEE方向变化,与前人使用CAP(Cut and Pasate)方法求出的主余震源机制方向基本一致.