The recognition of the Arabic characters is a crucial task incomputer vision and Natural Language Processing fields. Some major complicationsin recognizing handwritten texts include distortion and patternvariabilities...The recognition of the Arabic characters is a crucial task incomputer vision and Natural Language Processing fields. Some major complicationsin recognizing handwritten texts include distortion and patternvariabilities. So, the feature extraction process is a significant task in NLPmodels. If the features are automatically selected, it might result in theunavailability of adequate data for accurately forecasting the character classes.But, many features usually create difficulties due to high dimensionality issues.Against this background, the current study develops a Sailfish Optimizer withDeep Transfer Learning-Enabled Arabic Handwriting Character Recognition(SFODTL-AHCR) model. The projected SFODTL-AHCR model primarilyfocuses on identifying the handwritten Arabic characters in the inputimage. The proposed SFODTL-AHCR model pre-processes the input imageby following the Histogram Equalization approach to attain this objective.The Inception with ResNet-v2 model examines the pre-processed image toproduce the feature vectors. The Deep Wavelet Neural Network (DWNN)model is utilized to recognize the handwritten Arabic characters. At last,the SFO algorithm is utilized for fine-tuning the parameters involved in theDWNNmodel to attain better performance. The performance of the proposedSFODTL-AHCR model was validated using a series of images. Extensivecomparative analyses were conducted. The proposed method achieved a maximum accuracy of 99.73%. The outcomes inferred the supremacy of theproposed SFODTL-AHCR model over other approaches.展开更多
To study the characteristics of license plate characters recognition,this paper proposes a method for fea- ture extraction of license plate characters based on two-dimensional wavelet packet.We decompose license plate...To study the characteristics of license plate characters recognition,this paper proposes a method for fea- ture extraction of license plate characters based on two-dimensional wavelet packet.We decompose license plate character images with two dimensional-wavelet packet and search for the optimal wavelet packet basis.This paper pre- sents a criterion of searching for the optimal wavelet packet basis,and a practical algorithm.The obtained optimal wavelet packet basis is used as the feature of license plate character,and a BP neural network is used to classify the character.The test- ing results show that the proposed method achieved higher recognition rate than the traditional methods.展开更多
Handwritten signature and character recognition has become challenging research topic due to its numerous applications. In this paper, we proposed a system that has three sub-systems. The three subsystems focus on off...Handwritten signature and character recognition has become challenging research topic due to its numerous applications. In this paper, we proposed a system that has three sub-systems. The three subsystems focus on offline recognition of handwritten English alphabetic characters (uppercase and lowercase), numeric characters (0 - 9) and individual signatures respectively. The system includes several stages like image preprocessing, the post-processing, the segmentation, the detection of the required amount of the character and signature, feature extraction and finally Neural Network recognition. At first, the scanned image is filtered after conversion of the scanned image into a gray image. Then image cropping method is applied to detect the signature. Then an accurate recognition is ensured by post-processing the cropped images. MATLAB has been used to design the system. The subsystems are then tested for several samples and the results are found satisfactory at about 97% success rate. The quality of the image plays a vital role as the images of poor or mediocre quality may lead to unsuccessful recognition and verification.展开更多
In the present paper, the problem of handwritten character recognition has been tackled with multiresolution technique using discrete wavelet transform (DWT) and Euclidean distance metric (EDM). The technique has been...In the present paper, the problem of handwritten character recognition has been tackled with multiresolution technique using discrete wavelet transform (DWT) and Euclidean distance metric (EDM). The technique has been tested and found to be more accurate and faster. Characters is classified into 26 pattern classes based on appropriate properties. Features of the handwritten character images are extracted by DWT used with appropriate level of multiresolution technique, and then each pattern class is characterized by a mean vector. Distances from input pattern vector to all the mean vectors are computed by EDM. Minimum distance determines the class membership of input pattern vector. The proposed method provides good recognition accuracy of 90% for handwritten characters even with fewer samples.展开更多
Based on the analysis of the unique shapes and writing styles of Uyghur characters,we design a framework for prototype character recognition system and carry out a systematic theoretical and experimental research on i...Based on the analysis of the unique shapes and writing styles of Uyghur characters,we design a framework for prototype character recognition system and carry out a systematic theoretical and experimental research on its modules.In the preprocessing procedure,we use the linear and nonlinear normalization based on dot density method.Both structural and statistical features are extracted due to the fact that there are some very similar characters in Uyghur literature.In clustering analysis,we adopt the dynamic clustering algorithm based on the minimum spanning tree(MST),and use the k-nearest neighbor matching classification as classifier.The testing results of prototype system show that the recognition rates for characters of the four different types(independent,suffix,intermediate,and initial type) are 74.67%,70.42%,63.33%,and 72.02%,respectively;the recognition rates for the case of five candidates for those characters are 94.34%,94.19%,93.15%,and 95.86%,respectively.The ideas and methods used in this paper have some commonality and usefulness for the recognition of other characters that belong to Altaic languages family.展开更多
To solve students’ dictation problems, a speech dictation system basedon character recognition is proposed in this paper. The system applied offlinehandwritten Chinese character recognition technology, denoised the i...To solve students’ dictation problems, a speech dictation system basedon character recognition is proposed in this paper. The system applied offlinehandwritten Chinese character recognition technology, denoised the imagethrough Gaussian filter, segmented the text through projection method, and convertedthe image to text through OCR technology. The straight line mark in thepicture was detected by Hough transform technology, and then SKB-FSS algorithmand WST algorithm were used for speech synthesis. Experiments show thatthe system can effectively assist students in dictation.展开更多
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under grant number(168/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R263),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia+1 种基金The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4340237DSR32)The author would like to thank the Deanship of Scientific Research at Shaqra University for supporting this work。
文摘The recognition of the Arabic characters is a crucial task incomputer vision and Natural Language Processing fields. Some major complicationsin recognizing handwritten texts include distortion and patternvariabilities. So, the feature extraction process is a significant task in NLPmodels. If the features are automatically selected, it might result in theunavailability of adequate data for accurately forecasting the character classes.But, many features usually create difficulties due to high dimensionality issues.Against this background, the current study develops a Sailfish Optimizer withDeep Transfer Learning-Enabled Arabic Handwriting Character Recognition(SFODTL-AHCR) model. The projected SFODTL-AHCR model primarilyfocuses on identifying the handwritten Arabic characters in the inputimage. The proposed SFODTL-AHCR model pre-processes the input imageby following the Histogram Equalization approach to attain this objective.The Inception with ResNet-v2 model examines the pre-processed image toproduce the feature vectors. The Deep Wavelet Neural Network (DWNN)model is utilized to recognize the handwritten Arabic characters. At last,the SFO algorithm is utilized for fine-tuning the parameters involved in theDWNNmodel to attain better performance. The performance of the proposedSFODTL-AHCR model was validated using a series of images. Extensivecomparative analyses were conducted. The proposed method achieved a maximum accuracy of 99.73%. The outcomes inferred the supremacy of theproposed SFODTL-AHCR model over other approaches.
基金This work was supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK2004077).
文摘To study the characteristics of license plate characters recognition,this paper proposes a method for fea- ture extraction of license plate characters based on two-dimensional wavelet packet.We decompose license plate character images with two dimensional-wavelet packet and search for the optimal wavelet packet basis.This paper pre- sents a criterion of searching for the optimal wavelet packet basis,and a practical algorithm.The obtained optimal wavelet packet basis is used as the feature of license plate character,and a BP neural network is used to classify the character.The test- ing results show that the proposed method achieved higher recognition rate than the traditional methods.
文摘Handwritten signature and character recognition has become challenging research topic due to its numerous applications. In this paper, we proposed a system that has three sub-systems. The three subsystems focus on offline recognition of handwritten English alphabetic characters (uppercase and lowercase), numeric characters (0 - 9) and individual signatures respectively. The system includes several stages like image preprocessing, the post-processing, the segmentation, the detection of the required amount of the character and signature, feature extraction and finally Neural Network recognition. At first, the scanned image is filtered after conversion of the scanned image into a gray image. Then image cropping method is applied to detect the signature. Then an accurate recognition is ensured by post-processing the cropped images. MATLAB has been used to design the system. The subsystems are then tested for several samples and the results are found satisfactory at about 97% success rate. The quality of the image plays a vital role as the images of poor or mediocre quality may lead to unsuccessful recognition and verification.
文摘In the present paper, the problem of handwritten character recognition has been tackled with multiresolution technique using discrete wavelet transform (DWT) and Euclidean distance metric (EDM). The technique has been tested and found to be more accurate and faster. Characters is classified into 26 pattern classes based on appropriate properties. Features of the handwritten character images are extracted by DWT used with appropriate level of multiresolution technique, and then each pattern class is characterized by a mean vector. Distances from input pattern vector to all the mean vectors are computed by EDM. Minimum distance determines the class membership of input pattern vector. The proposed method provides good recognition accuracy of 90% for handwritten characters even with fewer samples.
基金supported by the National Natural Science Foundation of China(6113900261501229+1 种基金11547040)the Guangdong Natural Science Foundation(2016A030310051)
基金Supported by the National Natural Science Foundation of China (61065001)
文摘Based on the analysis of the unique shapes and writing styles of Uyghur characters,we design a framework for prototype character recognition system and carry out a systematic theoretical and experimental research on its modules.In the preprocessing procedure,we use the linear and nonlinear normalization based on dot density method.Both structural and statistical features are extracted due to the fact that there are some very similar characters in Uyghur literature.In clustering analysis,we adopt the dynamic clustering algorithm based on the minimum spanning tree(MST),and use the k-nearest neighbor matching classification as classifier.The testing results of prototype system show that the recognition rates for characters of the four different types(independent,suffix,intermediate,and initial type) are 74.67%,70.42%,63.33%,and 72.02%,respectively;the recognition rates for the case of five candidates for those characters are 94.34%,94.19%,93.15%,and 95.86%,respectively.The ideas and methods used in this paper have some commonality and usefulness for the recognition of other characters that belong to Altaic languages family.
基金This article is supported by the 2020 Innovation and Entrepreneurship Training Program for College Students in Jiangsu Province(Project name:Mom doesn’t have to worry about my dictation any more-dictation software based on character recognition,No.202011460104T)This article is supported by the National Natural Science Foundation of China Youth Science Foundation project(Project name:Research on Deep Discriminant Spares Representation Learning Method for Feature Extraction,No.61806098)This article is supported by Scientific Research Project of Nanjing Xiaozhuang University(Project name:Multi-robot collaborative system,No.2017NXY16).
文摘To solve students’ dictation problems, a speech dictation system basedon character recognition is proposed in this paper. The system applied offlinehandwritten Chinese character recognition technology, denoised the imagethrough Gaussian filter, segmented the text through projection method, and convertedthe image to text through OCR technology. The straight line mark in thepicture was detected by Hough transform technology, and then SKB-FSS algorithmand WST algorithm were used for speech synthesis. Experiments show thatthe system can effectively assist students in dictation.