Lipids may play an important role in preventing gas embolisms by coating nanobubbles in xylem sap.Few studies on xylem sap lipids have been reported for temperate plants,and it remain unclear whether sap lipids have a...Lipids may play an important role in preventing gas embolisms by coating nanobubbles in xylem sap.Few studies on xylem sap lipids have been reported for temperate plants,and it remain unclear whether sap lipids have adaptational significance in tropical plants.In this study,we quantify the lipid composition of xylem sap for angiosperm species from a tropical savanna(seven species)and a seasonal rainforest(five species)using mass spectrometry.We found that all twelve species studied contained lipids in their xylem sap,including galactolipids,phospholipids and triacylglycerol,with a total lipid concentration ranging from 0.09 to 0.26 nmol/L.There was no difference in lipid concentration or composition between plants from the two sites,and the lipid concentration was negatively related to species’open vessel volume.Furthermore,savanna species showed little variation in lipid composition between the dry and the rainy season.These results support the hypothesis that xylem sap lipids are derived from the cytoplasm of individual conduit cells,remain trapped inside individual conduits,and undergo few changes in composition over consecutive seasons.A xylem sap lipidomic data set,which includes 12 tropical tree species from this study and 11 temperate tree species from literature,revealed no phylogenetic signals in lipid composition for these species.This study fills a knowledge gap in the lipid content of xylem sap in tropical trees and provides additional support for their common distribution in xylem sap of woody angiosperms.It appears that xylem sap lipids have no adaptive significance.展开更多
Upstream signals potentially regulating evaporation and stomatal conductance wereinvestigated using 6-8-leaf-old maize (Zea may L.) seedlings which were grown in agreenhouse. Pressure chamber was used to measure leaf ...Upstream signals potentially regulating evaporation and stomatal conductance wereinvestigated using 6-8-leaf-old maize (Zea may L.) seedlings which were grown in agreenhouse. Pressure chamber was used to measure leaf water potential and to collectxylem sap. The pH of xylem sap in stems was higher than that in root, and the abscisicacid (ABA) concentration in stems was the highest in well-watered seedlings. The ABAconcentration and pH of xylem sap in roots, stems and leaves increased, and the ABAconcentration in leaves reached the maximum during drought stress. The treatment ofroots with exogenous ABA solution (100molL-1) increased xylem sap ABA concentration inall organs measured, and induced stomatal closure, but did not change ABA distributionamong organs of maize seedlings. The combined effects of external pH buffer on pH, ABAof xylem sap and stomatal behavior indicated that pH, as a root-source signal to leavesunder drought stress, regulated stomatal closure through accumulating ABA in leaves orguard cells.展开更多
Xylem sap primarily transports water and mineral nutrients such as nitrogen (N) from roots to shoots in vascular plants. However, it remains largely unknown how nitrogenous compounds, especially proteins in xylem sa...Xylem sap primarily transports water and mineral nutrients such as nitrogen (N) from roots to shoots in vascular plants. However, it remains largely unknown how nitrogenous compounds, especially proteins in xylem sap, respond to N under- or over-supply. We found that reducing N supply increased amino-N percentage of total N in maize (Zea mays L.) xylem sap. Proteomic analysis showed that 23 proteins in the xylem sap of maize plants, including 12 newly identified ones, differentially accumulated in response to various N supplies. Fifteen of these 23 proteins were primarily involved in general abiotic or biotic stress responses, whereas the other five proteins appeared to respond largely to N under- or over-supply, suggesting distinct protein responses in maize xylem upon N under- and over-supply. Furthermore, one putative xylanase inhibitor and two putative O-glycosyl hydrolases had preferential gene expression in shoots.展开更多
The ATP in roots and xylem sap of two woody plant species, Platycladus orientalis and Acacia auriculiformis, subjected to rapid and slow soil drying has been determined employing firefly luciferase ATP assay method (s...The ATP in roots and xylem sap of two woody plant species, Platycladus orientalis and Acacia auriculiformis, subjected to rapid and slow soil drying has been determined employing firefly luciferase ATP assay method (sensitivity is at 10<sup>-12</sup> mol ATP L<sup>-1</sup>). The ATP levels in the two species were 1.6 nmol. g<sub>DW</sub><sup>-1</sup> and 0.6 nmol. g<sub>DW</sub><sup>-1</sup> in roots, and 5.6 μmol·m<sup>-3</sup> and 8 μmol ·m<sup>-3</sup> in xylem sap, respectively. When plants of P. orientalis and A. auriculiformis were subjected to rapid soil drying, respectively, as soil water content (SWC) decreased from the normal level ( 0.2.5 g·g<sub>DW</sub><sup>-1</sup>) to 0.02 and 0.06 g·g<sub>DW</sub><sup>-1</sup>, separately, plant water potential ( ψ )dropped to - 4 and - 3.2 MPa, differently, the ATP in roots decreased 99.7% and 42%, respectively. When the rapidly dried soil was watered for up to 6 d, SWC and ψ, were found to recover to their normal levels, but ATP content in roots of P. orientalis and A. auriculiformis recovered by 10% and 23%, respectively. When plants展开更多
An experiment was carried out to study the transport process of nitrogen (N) assimilation from tea roots by monitoring the dynamic composition of N compounds in xylem sap after 15^N-NO3 and 15^N-NH4 were fed to the ...An experiment was carried out to study the transport process of nitrogen (N) assimilation from tea roots by monitoring the dynamic composition of N compounds in xylem sap after 15^N-NO3 and 15^N-NH4 were fed to the root of tea plants (Camellia sinensis L.). Results showed that the main amino acids were glutamine, theanine, axginine, asparic acid and glutamic acid, which accounted for 49%, 17%, 8%, 7%, and 4%, respectively, of the total amino acids in the xylem sap. After the tea plants were fed with 15^N-NO3 and 15^N-NH4 for 48 h, the amount of total amino acids in xylem sap significantly increased and those fed with 15^N-NH4 had higher increment than those with 15^N-NOa. Two hours after 15^N- NO3 and 15^N-NH4 were fed, 15N abundance in glutamine, asparagine, glutamic acid, alanine, and arginine were detected and increased quickly over time. This indicated that it took less than 2 h for NO3-N and NH4-N to be absorbed by tea roots, incorporated into the above amino acids and transported to the xylem sap. Rapid increase in 15^N-NO3 in the xylem sap of tea plants fed with 15^N-NO3 indicated that nitrate could be directly transported to the xylem sap. Glutamine, theanine, and alanine were the main amino acids transported in xylem sap of tea plants fed with both 15^N-NO3 and 15^N-NH4.展开更多
[Objective] The paper was to explore the impact of 5-aminolevunic acid(ALA)treatment on growth of winter oilseed rape(Brassica napus L.)seedlings and its mechanism.[Method] The effects of ALA on abscisic acid(ABA...[Objective] The paper was to explore the impact of 5-aminolevunic acid(ALA)treatment on growth of winter oilseed rape(Brassica napus L.)seedlings and its mechanism.[Method] The effects of ALA on abscisic acid(ABA)contents in plant organs and xylem saps were investigated through hydroponic experiment.Four treatments including seed soaking with 0,25,50 and 75 mg/L ALA solutions(CK,A1,A2 and A3)for 6 h were set in the test.[Result] In addition to A3 treatment which made the dry weights of oilseed rape seedlings slightly decrease,after seed soaking with ALA,dry weights,net photosynthetic rate(Pn),transpiration rate(Tr)and stomatal conductance(Gs)of plants significantly increased compared with control.ABA concentrations in plant shoots and xylem saps increased in different levels after seed soaking with ALA.[Conclusion] The increasing endogenous ABA contents might be an explanation for promotion effect of ALA application on the growth of winter oilseed rape seedling.展开更多
基金supported by the Natural Science Foundation of China (project number 31861133008)financial support from the Deutsche Forschungsgemeinschaft (German Research Foundation, DFG, project number 410768178)
文摘Lipids may play an important role in preventing gas embolisms by coating nanobubbles in xylem sap.Few studies on xylem sap lipids have been reported for temperate plants,and it remain unclear whether sap lipids have adaptational significance in tropical plants.In this study,we quantify the lipid composition of xylem sap for angiosperm species from a tropical savanna(seven species)and a seasonal rainforest(five species)using mass spectrometry.We found that all twelve species studied contained lipids in their xylem sap,including galactolipids,phospholipids and triacylglycerol,with a total lipid concentration ranging from 0.09 to 0.26 nmol/L.There was no difference in lipid concentration or composition between plants from the two sites,and the lipid concentration was negatively related to species’open vessel volume.Furthermore,savanna species showed little variation in lipid composition between the dry and the rainy season.These results support the hypothesis that xylem sap lipids are derived from the cytoplasm of individual conduit cells,remain trapped inside individual conduits,and undergo few changes in composition over consecutive seasons.A xylem sap lipidomic data set,which includes 12 tropical tree species from this study and 11 temperate tree species from literature,revealed no phylogenetic signals in lipid composition for these species.This study fills a knowledge gap in the lipid content of xylem sap in tropical trees and provides additional support for their common distribution in xylem sap of woody angiosperms.It appears that xylem sap lipids have no adaptive significance.
基金This work was financially supported by the Natural Science Foundation of Hebei Province,China(302466)the Developing Fund of Hebei Academy of Agriculture and Forestry Sciences,China(A03-1-02-14).
文摘Upstream signals potentially regulating evaporation and stomatal conductance wereinvestigated using 6-8-leaf-old maize (Zea may L.) seedlings which were grown in agreenhouse. Pressure chamber was used to measure leaf water potential and to collectxylem sap. The pH of xylem sap in stems was higher than that in root, and the abscisicacid (ABA) concentration in stems was the highest in well-watered seedlings. The ABAconcentration and pH of xylem sap in roots, stems and leaves increased, and the ABAconcentration in leaves reached the maximum during drought stress. The treatment ofroots with exogenous ABA solution (100molL-1) increased xylem sap ABA concentration inall organs measured, and induced stomatal closure, but did not change ABA distributionamong organs of maize seedlings. The combined effects of external pH buffer on pH, ABAof xylem sap and stomatal behavior indicated that pH, as a root-source signal to leavesunder drought stress, regulated stomatal closure through accumulating ABA in leaves orguard cells.
基金supported by the National Natural Science Foundation of China(3067123731172016)+1 种基金the Innovative Group Grant of the National Natural Science Foundation of China(31121062)the National Basic Research Program of China(973 Program,2009CB118606)
文摘Xylem sap primarily transports water and mineral nutrients such as nitrogen (N) from roots to shoots in vascular plants. However, it remains largely unknown how nitrogenous compounds, especially proteins in xylem sap, respond to N under- or over-supply. We found that reducing N supply increased amino-N percentage of total N in maize (Zea mays L.) xylem sap. Proteomic analysis showed that 23 proteins in the xylem sap of maize plants, including 12 newly identified ones, differentially accumulated in response to various N supplies. Fifteen of these 23 proteins were primarily involved in general abiotic or biotic stress responses, whereas the other five proteins appeared to respond largely to N under- or over-supply, suggesting distinct protein responses in maize xylem upon N under- and over-supply. Furthermore, one putative xylanase inhibitor and two putative O-glycosyl hydrolases had preferential gene expression in shoots.
文摘The ATP in roots and xylem sap of two woody plant species, Platycladus orientalis and Acacia auriculiformis, subjected to rapid and slow soil drying has been determined employing firefly luciferase ATP assay method (sensitivity is at 10<sup>-12</sup> mol ATP L<sup>-1</sup>). The ATP levels in the two species were 1.6 nmol. g<sub>DW</sub><sup>-1</sup> and 0.6 nmol. g<sub>DW</sub><sup>-1</sup> in roots, and 5.6 μmol·m<sup>-3</sup> and 8 μmol ·m<sup>-3</sup> in xylem sap, respectively. When plants of P. orientalis and A. auriculiformis were subjected to rapid soil drying, respectively, as soil water content (SWC) decreased from the normal level ( 0.2.5 g·g<sub>DW</sub><sup>-1</sup>) to 0.02 and 0.06 g·g<sub>DW</sub><sup>-1</sup>, separately, plant water potential ( ψ )dropped to - 4 and - 3.2 MPa, differently, the ATP in roots decreased 99.7% and 42%, respectively. When the rapidly dried soil was watered for up to 6 d, SWC and ψ, were found to recover to their normal levels, but ATP content in roots of P. orientalis and A. auriculiformis recovered by 10% and 23%, respectively. When plants
文摘An experiment was carried out to study the transport process of nitrogen (N) assimilation from tea roots by monitoring the dynamic composition of N compounds in xylem sap after 15^N-NO3 and 15^N-NH4 were fed to the root of tea plants (Camellia sinensis L.). Results showed that the main amino acids were glutamine, theanine, axginine, asparic acid and glutamic acid, which accounted for 49%, 17%, 8%, 7%, and 4%, respectively, of the total amino acids in the xylem sap. After the tea plants were fed with 15^N-NO3 and 15^N-NH4 for 48 h, the amount of total amino acids in xylem sap significantly increased and those fed with 15^N-NH4 had higher increment than those with 15^N-NOa. Two hours after 15^N- NO3 and 15^N-NH4 were fed, 15N abundance in glutamine, asparagine, glutamic acid, alanine, and arginine were detected and increased quickly over time. This indicated that it took less than 2 h for NO3-N and NH4-N to be absorbed by tea roots, incorporated into the above amino acids and transported to the xylem sap. Rapid increase in 15^N-NO3 in the xylem sap of tea plants fed with 15^N-NO3 indicated that nitrate could be directly transported to the xylem sap. Glutamine, theanine, and alanine were the main amino acids transported in xylem sap of tea plants fed with both 15^N-NO3 and 15^N-NH4.
基金Supported by the Special Funds of Scientific and Technological Support Project of China(2009BADA8B01)Special Funds for Public Welfare Industry(Agriculture)Study of China(200903003)~~
文摘[Objective] The paper was to explore the impact of 5-aminolevunic acid(ALA)treatment on growth of winter oilseed rape(Brassica napus L.)seedlings and its mechanism.[Method] The effects of ALA on abscisic acid(ABA)contents in plant organs and xylem saps were investigated through hydroponic experiment.Four treatments including seed soaking with 0,25,50 and 75 mg/L ALA solutions(CK,A1,A2 and A3)for 6 h were set in the test.[Result] In addition to A3 treatment which made the dry weights of oilseed rape seedlings slightly decrease,after seed soaking with ALA,dry weights,net photosynthetic rate(Pn),transpiration rate(Tr)and stomatal conductance(Gs)of plants significantly increased compared with control.ABA concentrations in plant shoots and xylem saps increased in different levels after seed soaking with ALA.[Conclusion] The increasing endogenous ABA contents might be an explanation for promotion effect of ALA application on the growth of winter oilseed rape seedling.