AIMTo investigate the role of non-structural open reading frame 1 “Y-domain” sequences in the hepatitis E virus (HEV) life cycle.METHODSSequences of human HEV Y-domain (amino acid sequences 216...AIMTo investigate the role of non-structural open reading frame 1 “Y-domain” sequences in the hepatitis E virus (HEV) life cycle.METHODSSequences of human HEV Y-domain (amino acid sequences 216-442) and closely-related viruses were analyzed in silico. Site-directed mutagenesis of the Y-domain (HEV SAR55) was carried out and studied in the replicon-baculovirus-hepatoma cell model. In vitro transcribed mRNA (pSK-GFP) constructs were transfected into S10-3 cells and viral RNA replicating GFP-positive cells were scored by flow cytometry. Mutant virions’ infectivity was assayed on naïve HepG2/C3A cells.RESULTSIn silico analysis identified a potential palmitoylation-site (C<sub>336</sub>C<sub>337</sub>) and an α-helix segment (L<sub>410</sub>Y<sub>411</sub>S<sub>412</sub>W<sub>413</sub>L<sub>414</sub>F<sub>415</sub>E<sub>416</sub>) in the HEV Y-domain. Molecular characterization of C<sub>336</sub>A, C<sub>337</sub>A and W<sub>413</sub>A mutants of the three universally conserved residues showed non-viability. Further, of the 10 consecutive saturation mutants covering the entire Y-domain nucleotide sequences (nts 650-1339), three constructs (nts 788-994) severely affected virus replication. This revealed the indispensability of the internal sequences but not of the up- or downstream sequences at the transcriptional level. Interestingly, the three mutated residues corresponded to the downstream codons that tolerated saturation mutation, indicating their post-translational functional/structural essentiality. In addition, RNA secondary structure prediction revealed formation of stable hairpins (nts 788-994) where saturation mutation drastically inhibited virion infectivity.CONCLUSIONThis is the first demonstration of the critical role of Y-domain sequences in HEV life cycle, which may involve gene regulation and/or membrane binding in intracellular replication complexes.展开更多
在简单回顾奇异值法压制随机噪音的基础上,提出了基于奇异值分解的f x y域滤波方法。该方法是一种三维去噪方法,它不需求取同相轴的倾角就可以去除倾斜同相轴的随机噪音,同时还可以较好地保持地震信号的振幅。经理论模型试算表明,该方...在简单回顾奇异值法压制随机噪音的基础上,提出了基于奇异值分解的f x y域滤波方法。该方法是一种三维去噪方法,它不需求取同相轴的倾角就可以去除倾斜同相轴的随机噪音,同时还可以较好地保持地震信号的振幅。经理论模型试算表明,该方法运算速度快,效果明显,是一种可行的去噪方法。展开更多
基金Supported by the Deanship of Scientific Research at King Saud University,Riyadh,No.RG-1435-053
文摘AIMTo investigate the role of non-structural open reading frame 1 “Y-domain” sequences in the hepatitis E virus (HEV) life cycle.METHODSSequences of human HEV Y-domain (amino acid sequences 216-442) and closely-related viruses were analyzed in silico. Site-directed mutagenesis of the Y-domain (HEV SAR55) was carried out and studied in the replicon-baculovirus-hepatoma cell model. In vitro transcribed mRNA (pSK-GFP) constructs were transfected into S10-3 cells and viral RNA replicating GFP-positive cells were scored by flow cytometry. Mutant virions’ infectivity was assayed on naïve HepG2/C3A cells.RESULTSIn silico analysis identified a potential palmitoylation-site (C<sub>336</sub>C<sub>337</sub>) and an α-helix segment (L<sub>410</sub>Y<sub>411</sub>S<sub>412</sub>W<sub>413</sub>L<sub>414</sub>F<sub>415</sub>E<sub>416</sub>) in the HEV Y-domain. Molecular characterization of C<sub>336</sub>A, C<sub>337</sub>A and W<sub>413</sub>A mutants of the three universally conserved residues showed non-viability. Further, of the 10 consecutive saturation mutants covering the entire Y-domain nucleotide sequences (nts 650-1339), three constructs (nts 788-994) severely affected virus replication. This revealed the indispensability of the internal sequences but not of the up- or downstream sequences at the transcriptional level. Interestingly, the three mutated residues corresponded to the downstream codons that tolerated saturation mutation, indicating their post-translational functional/structural essentiality. In addition, RNA secondary structure prediction revealed formation of stable hairpins (nts 788-994) where saturation mutation drastically inhibited virion infectivity.CONCLUSIONThis is the first demonstration of the critical role of Y-domain sequences in HEV life cycle, which may involve gene regulation and/or membrane binding in intracellular replication complexes.