Advanced processes for peroxymonosulfate(PMS)-based oxidation are efficient in eliminating toxic and refractory organic pol-lutants from sewage.The activation of electron-withdrawing HSO_(5)^(-)releases reactive speci...Advanced processes for peroxymonosulfate(PMS)-based oxidation are efficient in eliminating toxic and refractory organic pol-lutants from sewage.The activation of electron-withdrawing HSO_(5)^(-)releases reactive species,including sulfate radical(·SO_(4)^(-)),hydroxyl radical(·OH),superoxide radical(·O_(2)^(-)),and singlet oxygen(1O_(2)),which can induce the degradation of organic contaminants.In this work,we synthesized a variety of M-OMS-2 nanorods(M=Co,Ni,Cu,Fe)by doping Co^(2+),Ni^(2+),Cu^(2+),or Fe^(3+)into manganese oxide oc-tahedral molecular sieve(OMS-2)to efficiently remove sulfamethoxazole(SMX)via PMS activation.The catalytic performance of M-OMS-2 in SMX elimination via PMS activation was assessed.The nanorods obtained in decreasing order of SMX removal rate were Cu-OMS-2(96.40%),Co-OMS-2(88.00%),Ni-OMS-2(87.20%),Fe-OMS-2(35.00%),and OMS-2(33.50%).Then,the kinetics and struc-ture-activity relationship of the M-OMS-2 nanorods during the elimination of SMX were investigated.The feasible mechanism underly-ing SMX degradation by the Cu-OMS-2/PMS system was further investigated with a quenching experiment,high-resolution mass spec-troscopy,and electron paramagnetic resonance.Results showed that SMX degradation efficiency was enhanced in seawater and tap water,demonstrating the potential application of Cu-OMS-2/PMS system in sewage treatment.展开更多
In order to comprehend the applicability of microwave irradiation for recovering coalbed methane,it is necessary to evaluate the microwave irradiation-induced alterations in coals with varying levels of metamorphism.I...In order to comprehend the applicability of microwave irradiation for recovering coalbed methane,it is necessary to evaluate the microwave irradiation-induced alterations in coals with varying levels of metamorphism.In this work,the carbon molecular sieve combined with KMnO_(4)oxidation was selected to fabricate carbon molecular sieve with diverse oxidation degrees,which can serve as model substances toward coals.Afterwards,the microwave irradiation dependences of pores,functional groups,and highpressure methane adsorption characteristics of model substances were studied.The results indicated that microwave irradiation causes rearrangement of oxygen-containing functional groups,which could block the micropores with a size of 0.40-0.60 nm in carbon molecular sieve;meanwhile,naphthalene and phenanthrene generated by macro-molecular structure pyrolysis due to microwave irradiation could block the micropores with a size of 0.70-0.90 nm.These alterations in micropore structure weaken the saturated methane adsorption capacity of oxidized carbon molecular sieve by 2.91%-23.28%,suggesting that microwave irradiation could promote methane desorption.Moreover,the increased mesopores found for oxidized carbon molecular sieve after microwave irradiation could benefit CH4 diffusion.In summary,the oxidized carbon molecular sieve can act as model substances toward coals with different ranks.Additionally,microwave irradiation is a promising technology to enhance coalbed methane recovery.展开更多
Zinc metal anodes are gaining popularity in aqueous electrochemical energy storage systems for their high safety,cost-effectiveness,and high capacity.However,the service life of zinc metal anodes is severely constrain...Zinc metal anodes are gaining popularity in aqueous electrochemical energy storage systems for their high safety,cost-effectiveness,and high capacity.However,the service life of zinc metal anodes is severely constrained by critical challenges,including dendrites,water-induced hydrogen evolution,and passivation.In this study,a protective two-dimensional metal–organic framework interphase is in situ constructed on the zinc anode surface with a novel gel vapor deposition method.The ultrathin interphase layer(~1μm)is made of layer-stacking 2D nanosheets with angstrom-level pores of around 2.1Å,which serves as an ion sieve to reject large solvent–ion pairs while homogenizes the transport of partially desolvated zinc ions,contributing to a uniform and highly reversible zinc deposition.With the shielding of the interphase layer,an ultra-stable zinc plating/stripping is achieved in symmetric cells with cycling over 1000 h at 0.5 mA cm−2 and~700 h at 1 mA cm^(−2),far exceeding that of the bare zinc anodes(250 and 70 h).Furthermore,as a proof-of-concept demonstration,the full cell paired with MnO_(2) cathode demonstrates improved rate performances and stable cycling(1200 cycles at 1 A g−1).This work provides fresh insights into interphase design to promote the performance of zinc metal anodes.展开更多
Flue gas and coal bed methane are two important sources of greenhouse gases.Pressure swing adsorption process has a wide range of application in the field of gas separation,and the selection of adsorbent is crucial.In...Flue gas and coal bed methane are two important sources of greenhouse gases.Pressure swing adsorption process has a wide range of application in the field of gas separation,and the selection of adsorbent is crucial.In this regard,in order to assess the better adsorbent for separating CO_(2) from flue gas and CH_(4) from coal bed methane,adsorption isotherms of CO_(2),CH_(4) and N_(2) on activated carbon and carbon molecular sieve are measured at 303.15,318.15 and 333.15 K,and up to 250 kPa.The experimental data fit better with Langmuir 2 compared to Langmuir 3 and Langmuir-Freundlich models,and Clausius-Clapeyron equation was used to calculate the isosteric heat.Both the order of the adsorbed amount and the adsorption heat on the two adsorbents are CO_(2)>CH_(4)>N_(2).The adsorption kinetics are calculated by the pseudo-first kinetic model,and the order of adsorption rates on activated carbon is N_(2)-CH_(4)>CO_(2),while on carbon molecular sieve,it is CO_(2)-N_(2)>CH_(4).It is shown that relative molecular mass and adsorption heat are the primary effect on kinetics for activated carbon,while kinetic diameter is the main resistance factor for carbon molecular sieve.Moreover,the adsorption selectivity of CH_(4)/N_(2) and CO_(2)/N_(2) were estimated with the ideal adsorption solution theory,and carbon molecular sieve performed best at 318.15 K for both CO_(2) and CH_(4) separation.The study suggested that activated carbon is a better choice for separating flue gas and carbon molecular sieve can be a strong candidate for separating coal bed methane.展开更多
The activation effect of boric acid as an activator is good,and we investigate the best activation conditions for the boric acid impregnation method.To represent the structural characteristics and adsorption performan...The activation effect of boric acid as an activator is good,and we investigate the best activation conditions for the boric acid impregnation method.To represent the structural characteristics and adsorption performance of the Stellera Chamaejasme based carbon molecular sieves,we use Brunner-Emmet-Teller(BET)measurements,scan-ning electron microscope(SEM),Raman spectra(Raman),X-ray diffraction(XRD),and adsorption property measurement.When the loading ratio was 0.68:1,the specific surface area was 532.21 m^(2)/g,the total pore volume was 0.24 cm 3/g,the average pore size was 1.81 nm,the adsorption value of methylene blue was 145.28 mg/g,and the adsorption value of iodine was 713.33 mg/g,the results showed that boric acid had better activation effect.The carbon molecular sieves made from Stellera Chamaejasme and activated with boric acid produce two peaks on the aperture distribution graph that are densely distributed in the micropore range.This indicates that boric acid’s pore-forming tendency is primarily micropore.展开更多
The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional meth...The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional method and presents an extended wet sieving method.The extended method uses both the steel sieves and the nylon filter cloth sieves.The apertures of the cloth sieves are smaller than 0.063 mm and equal 0.048 mm,0.038 mm,0.014 mm,0.012 mm,0.0063 mm,0.004 mm,0.003 mm,0.002 mm,and 0.001 mm,respectively.The extended method uses five steps to separate the general soil into many material sub-groups of gravel,sand,silt and clay with known particle size ranges.The complete PSD of the general soil is then calculated from the dry masses of the individual material sub-groups.The extended method is demonstrated with a general soil of completely decomposed granite(CDG)in Hong Kong,China.The silt and clay materials with different particle size ranges are further examined,checked and verified using stereomicroscopic observation,physical and chemical property tests.The results further confirm the correctness of the extended wet sieving method.展开更多
To improve oil quality,ZSM-22/SAPO-11 composite molecular sieves were synthesized by adding ZSM-22 into a synthetic gel of SAPO-11 for n-decane hydroisomerization.The mass ratios of ZSM-22/(ZSM-22+SAPO-11)in the compo...To improve oil quality,ZSM-22/SAPO-11 composite molecular sieves were synthesized by adding ZSM-22 into a synthetic gel of SAPO-11 for n-decane hydroisomerization.The mass ratios of ZSM-22/(ZSM-22+SAPO-11)in the composite molecular sieves were optimized and the optimal ZSM-22/SAPO-11 composite(ZS-9)was obtained.The electrostatic repulsions between the ZSM-22 precursors and the SAPO-11 crystalline nuclei produced small ZSM-22 and SAPO-11 crystallites in ZS-9,which increased the specific surface area and mesopore volume and thereby exposed more acid sites.In comparison with conventional SAPO-11,ZSM-22 and their mechanical mixture,ZS-9 with smaller crystallites and the optimal medium and strong Brønsted acid centers(MSBAC)content displayed a higher yield of branched C_(10) isomers(81.6%),lower cracking selectivity(11.9%)and excellent stability.The correlation between the i-C_(10) selectivity and the MSBAC density of molecular sieves indicated that the selectivity for branched C_(10) isomers first increased and then decreased with increasing MSBAC density on the molecular sieves,and the maximum selectivity(87.7%)occurred with a density of 9.6×10^(−2)μmol m^(−2).展开更多
Aqueous sodium-ion batteries are known for poor rechargeability because of the competitive water decomposition reactions and the high electrode solubility.Improvements have been reported by saltconcentrated and organi...Aqueous sodium-ion batteries are known for poor rechargeability because of the competitive water decomposition reactions and the high electrode solubility.Improvements have been reported by saltconcentrated and organic-hybridized electrolyte designs,however,at the expense of cost and safety.Here,we report the prolonged cycling of ASIBs in routine dilute electrolytes by employing artificial electrode coatings consisting of NaX zeolite and NaOH-neutralized perfluorinated sulfonic polymer.The as-formed composite interphase exhibits a molecularsieving effect jointly played by zeolite channels and size-shrunken ionic domains in the polymer matrix,which enables high rejection of hydrated Na^(+)ions while allowing fast dehydrated Na^(+)permeance.Applying this coating to electrode surfaces expands the electrochemical window of a practically feasible 2 mol kg^(-1) sodium trifluoromethanesulfonate aqueous electrolyte to 2.70 V and affords Na_(2)MnFe(CN)_(6)//NaTi_(2)(PO_(4))_(3) full cells with an unprecedented cycling stability of 94.9%capacity retention after 200 cycles at 1 C.Combined with emerging electrolyte modifications,this molecular-sieving interphase brings amplified benefits in long-term operation of ASIBs.展开更多
Negatively thermo-responsive 2D membranes,which mimic the stomatal opening/closing of plants,have drawn substantial interest for tunable molecular separation processes.However,these membranes are still restricted sign...Negatively thermo-responsive 2D membranes,which mimic the stomatal opening/closing of plants,have drawn substantial interest for tunable molecular separation processes.However,these membranes are still restricted significantly on account of low water permeability and poor dynamic tunability of 2D nanochannels under temperature stimulation.Here,we present a biomimetic negatively thermo-responsive MXene membrane by covalently grafting poly(N-isopropylacrylamide)(PNIPAm)onto MXene nanosheets.The uniformly grafted PNIPAm polymer chains can enlarge the interlayer spacings for increasing water permeability while also allowing more tunability of 2D nanochannels for enhancing the capability of gradually separating multiple molecules of different sizes.As expected,the constructed membrane exhibits ultrahigh water permeance of 95.6 L m^(-2) h^(-1) bar^(-1) at 25℃,which is eight-fold higher than the state-of-the-art negatively thermoresponsive 2D membranes.Moreover,the highly temperature-tunable 2D nanochannels enable the constructed membrane to perform excellent graded molecular sieving for dye-and antibiotic-based ternary mixtures.This strategy provides new perspectives in engineering smart 2D membrane and expands the scope of temperature-responsive membranes,showing promising applications in micro/nanofluidics and molecular separation.展开更多
Carbon bridge ring compounds are widely distributed in natural products in various forms. Since these molecules have angular strain, they can change their carbon bridge ring skeleton to the stabilized structures by re...Carbon bridge ring compounds are widely distributed in natural products in various forms. Since these molecules have angular strain, they can change their carbon bridge ring skeleton to the stabilized structures by releasing energy under suitable conditions.展开更多
The ultrastructures of the root protophleom sieve element at different developmental stages of Arabidopsis thaliana L. were investigated using the technique of high pressure freezing and freeze substitution fixing spe...The ultrastructures of the root protophleom sieve element at different developmental stages of Arabidopsis thaliana L. were investigated using the technique of high pressure freezing and freeze substitution fixing specimen. The results show that in the development of the sieve elements, the nuclei undergo typical characteristics of the programmed cell death (PCD): the nuclear envelopes form emboli, the chromatin condenses and aggregates towards the nuclear envelope, which degrades and fully disappears later. Before the nucleus degradation, neither the nuclear envelope undulation, nucleus lobe nor marked dilation (or bleb) of perinuclear space could be observed. In the cytoplasm of the mature sieve element, there are starch-like granules separately sheathed with a layer of membrane and usually with mitochondria around. These gnanules seem to provide substrates to mitochondria in their function. Small vacuoles originate from endoplasmic reticulum (ER), and no bigger vacuole was found.展开更多
Ultrastructural changes in the sieve element and dense cells of nectariferous tissue during the development of floral nectary in Arabidopsis thaliana L. were investigated with transmission electron microscopy. Samples...Ultrastructural changes in the sieve element and dense cells of nectariferous tissue during the development of floral nectary in Arabidopsis thaliana L. were investigated with transmission electron microscopy. Samples were prepared with high pressure freezing and freeze substitution techniques. The ultrastructure of dense cell was similar to that of sieve element at its early developmental stage. With the concurrent agglutination of chromatin in the nucleus, the abnormal location of organelles and the high density of cytoplasm, the ultrastructural characteristics in die dense cells of the nectariferous tissue and in the sieve element are matched with those of the programmed cell death in animal and plant reported in recent years. The disorganization of nucleus and most organelles in the differentiation of sieve elements and dense cells is closely associated with the transportation and modification of pre-nectar and the transference of nectar. This suggests that the cytological changes in sieve element and nectariferous tissue are closely associated with the nectary functional activities.展开更多
A mathematical model for simulating concentric-bed and other components of molecular sieve oxygen concentrator is established. In the model, the binary Langmuir equilibrium adsorption equation is adopted to describe t...A mathematical model for simulating concentric-bed and other components of molecular sieve oxygen concentrator is established. In the model, the binary Langmuir equilibrium adsorption equation is adopted to describe the adsorption performance of the adsorbent, the linear driving force (LDF) model is used to describe the mass transfer rate, and the thermal effect during adsorption is considered. The finite difference method is used in simulation and comparison. Numerical results have a reasonable agreement with the experimental research.展开更多
Vapor liquid solid three phase equilibria of ethanol water 4A molecular sieve system are studied experimentally and theoritically. It is proved that the addition of adsorbent does not chang...Vapor liquid solid three phase equilibria of ethanol water 4A molecular sieve system are studied experimentally and theoritically. It is proved that the addition of adsorbent does not change the equilibrium relation between vapor and bulk liquid phase. A calculation procedure is proposed to predict vapor liquid solid (adsorbent) three phase euquilibria.展开更多
Silicoaluminophosphate(SAPO) molecular sieves doped with cobalt(Co-SAPO-5) were synthesized hydrothermally with different concentrations of Co.Each sample was characterized by X-ray diffraction,N2 adsorption-desor...Silicoaluminophosphate(SAPO) molecular sieves doped with cobalt(Co-SAPO-5) were synthesized hydrothermally with different concentrations of Co.Each sample was characterized by X-ray diffraction,N2 adsorption-desorption,scanning electron microscopy,ultraviolet-visible spectroscopy,temperature-programmed desorption of NH3(NH3-TPD),and infrared spectrascopy of adsorbed pyridine(Py-IR).The results showed that Co was highly dispersed in the Co-SAPO-5 samples.In addition,a part of the Co content had been incorporated into the SAPO-5 framework,while the remainder existed on the surface as extra-framework Co.The surface areas of the Co-SAOP-5 samples were similar to the SAPO-5 sample.However,the pore volumes of the Co-SAOP-5 samples were lower than that of the SAOP-5 sample.As the concentration of Co increased,the pore volume gradually decreased because extra-framework cobalt oxide was present on the catalyst surface.NH3-TPD and Py-IR results revealed that the amount of Br(?)nsted acid and the total amount of acid for the Co-SAPO-5 samples were higher than that for the SAPO-5 sample.These values were also higher for samples with higher Co content.The catalytic activity of the Co-SAPO-5 samples was evaluated for the oxidation of cyclohexane with molecular oxygen.When Co was added to the SAPO-5 catalyst,the catalytic activity of the Co-SAPO-5 catalysts improved.In addition,the conversion of cyclohexane increased as the Co content in the Co-SAPO-5 catalysts increased.However,with a high conversion of cyclohexane(6.30%),the total selectivity of cyclohexanone(K) and cyclohexanol(A) decreased sharply.The K/A ratio ranged from 1.15 to 2.47.The effects of reaction conditions(i.e.,reaction temperature,reaction time,initial oxygen pressure,and the catalyst amount) on the performance of the Co-SAPO-5 catalysts have also been measured.Furthermore,the stability of the Co-SAPO-5 catalyst was explored and found to be good for the selective oxidation of cyclohexane by molecular oxygen.展开更多
This paper introduces a method of sieve which can be to calculate the number of residues of the integers 1,2,...,2a sifted by n paiwise coprime numbers.
Samples of methane molecules grade diameter channel CHA-type molecular sieves(Chabazite-K, SAPO-34 and SSZ-13) were investigated using the adsorption separation of CH4/N2 mixtures. The isotherms recorded for CH4 and N...Samples of methane molecules grade diameter channel CHA-type molecular sieves(Chabazite-K, SAPO-34 and SSZ-13) were investigated using the adsorption separation of CH4/N2 mixtures. The isotherms recorded for CH4 and N2 follow a typical type-Ι behavior, which were fitted well with the Sips model(R2>0.999) and the selectivity was calculated using IAST theory. The results reveal that Chabazite-K has the highest selectivity(SCH4/N= 5.5).2 SSZ-13 has the largest capacity, which can adsorb up to a maximum of 30.957 cm3·g-1(STP) of CH4, due to it having the largest pore volume and surface area, but the lowest selectivity(SCH4/N2= 2.5). From the breakthrough test, we can conclude that SSZ-13 may be a suitable candidate for the recovery of CH4 from low concentration methane(CH4<20%) based on its larger pore volume and higher CH4 capacity. Chabazite-K is more suited to the separation of high concentration methane(CH4>50%) due to its higher selectivity.展开更多
基金supported by the National Natural Science Foundation of China(Nos.21972073,22136003,22206188,and 21805166).
文摘Advanced processes for peroxymonosulfate(PMS)-based oxidation are efficient in eliminating toxic and refractory organic pol-lutants from sewage.The activation of electron-withdrawing HSO_(5)^(-)releases reactive species,including sulfate radical(·SO_(4)^(-)),hydroxyl radical(·OH),superoxide radical(·O_(2)^(-)),and singlet oxygen(1O_(2)),which can induce the degradation of organic contaminants.In this work,we synthesized a variety of M-OMS-2 nanorods(M=Co,Ni,Cu,Fe)by doping Co^(2+),Ni^(2+),Cu^(2+),or Fe^(3+)into manganese oxide oc-tahedral molecular sieve(OMS-2)to efficiently remove sulfamethoxazole(SMX)via PMS activation.The catalytic performance of M-OMS-2 in SMX elimination via PMS activation was assessed.The nanorods obtained in decreasing order of SMX removal rate were Cu-OMS-2(96.40%),Co-OMS-2(88.00%),Ni-OMS-2(87.20%),Fe-OMS-2(35.00%),and OMS-2(33.50%).Then,the kinetics and struc-ture-activity relationship of the M-OMS-2 nanorods during the elimination of SMX were investigated.The feasible mechanism underly-ing SMX degradation by the Cu-OMS-2/PMS system was further investigated with a quenching experiment,high-resolution mass spec-troscopy,and electron paramagnetic resonance.Results showed that SMX degradation efficiency was enhanced in seawater and tap water,demonstrating the potential application of Cu-OMS-2/PMS system in sewage treatment.
基金supported by the National Natural Science Foundation of China(42272202 and 52264001)the Yunnan Fundamental Research Projects(202201AT070144)+1 种基金the Yunnan Ten Thousand Talents Plan Young&Elite Talents Project(YNWRQNBJ-2019-164)Training Programmes of Innovation and Entrepreneurship for Undergraduates of Yunnan Province(S202210674128).
文摘In order to comprehend the applicability of microwave irradiation for recovering coalbed methane,it is necessary to evaluate the microwave irradiation-induced alterations in coals with varying levels of metamorphism.In this work,the carbon molecular sieve combined with KMnO_(4)oxidation was selected to fabricate carbon molecular sieve with diverse oxidation degrees,which can serve as model substances toward coals.Afterwards,the microwave irradiation dependences of pores,functional groups,and highpressure methane adsorption characteristics of model substances were studied.The results indicated that microwave irradiation causes rearrangement of oxygen-containing functional groups,which could block the micropores with a size of 0.40-0.60 nm in carbon molecular sieve;meanwhile,naphthalene and phenanthrene generated by macro-molecular structure pyrolysis due to microwave irradiation could block the micropores with a size of 0.70-0.90 nm.These alterations in micropore structure weaken the saturated methane adsorption capacity of oxidized carbon molecular sieve by 2.91%-23.28%,suggesting that microwave irradiation could promote methane desorption.Moreover,the increased mesopores found for oxidized carbon molecular sieve after microwave irradiation could benefit CH4 diffusion.In summary,the oxidized carbon molecular sieve can act as model substances toward coals with different ranks.Additionally,microwave irradiation is a promising technology to enhance coalbed methane recovery.
基金supported by the grants from the Research Grants Council of the Hong Kong Special Administrative Region,China(Project No.C5031-20)the Guangdong Major Project of Basic and Applied Basic Research(2023B0303000002).
文摘Zinc metal anodes are gaining popularity in aqueous electrochemical energy storage systems for their high safety,cost-effectiveness,and high capacity.However,the service life of zinc metal anodes is severely constrained by critical challenges,including dendrites,water-induced hydrogen evolution,and passivation.In this study,a protective two-dimensional metal–organic framework interphase is in situ constructed on the zinc anode surface with a novel gel vapor deposition method.The ultrathin interphase layer(~1μm)is made of layer-stacking 2D nanosheets with angstrom-level pores of around 2.1Å,which serves as an ion sieve to reject large solvent–ion pairs while homogenizes the transport of partially desolvated zinc ions,contributing to a uniform and highly reversible zinc deposition.With the shielding of the interphase layer,an ultra-stable zinc plating/stripping is achieved in symmetric cells with cycling over 1000 h at 0.5 mA cm−2 and~700 h at 1 mA cm^(−2),far exceeding that of the bare zinc anodes(250 and 70 h).Furthermore,as a proof-of-concept demonstration,the full cell paired with MnO_(2) cathode demonstrates improved rate performances and stable cycling(1200 cycles at 1 A g−1).This work provides fresh insights into interphase design to promote the performance of zinc metal anodes.
基金supported by the renewable energy and hydrogen projects in National Key Research and Development Plan of China(2019YFB1505000).
文摘Flue gas and coal bed methane are two important sources of greenhouse gases.Pressure swing adsorption process has a wide range of application in the field of gas separation,and the selection of adsorbent is crucial.In this regard,in order to assess the better adsorbent for separating CO_(2) from flue gas and CH_(4) from coal bed methane,adsorption isotherms of CO_(2),CH_(4) and N_(2) on activated carbon and carbon molecular sieve are measured at 303.15,318.15 and 333.15 K,and up to 250 kPa.The experimental data fit better with Langmuir 2 compared to Langmuir 3 and Langmuir-Freundlich models,and Clausius-Clapeyron equation was used to calculate the isosteric heat.Both the order of the adsorbed amount and the adsorption heat on the two adsorbents are CO_(2)>CH_(4)>N_(2).The adsorption kinetics are calculated by the pseudo-first kinetic model,and the order of adsorption rates on activated carbon is N_(2)-CH_(4)>CO_(2),while on carbon molecular sieve,it is CO_(2)-N_(2)>CH_(4).It is shown that relative molecular mass and adsorption heat are the primary effect on kinetics for activated carbon,while kinetic diameter is the main resistance factor for carbon molecular sieve.Moreover,the adsorption selectivity of CH_(4)/N_(2) and CO_(2)/N_(2) were estimated with the ideal adsorption solution theory,and carbon molecular sieve performed best at 318.15 K for both CO_(2) and CH_(4) separation.The study suggested that activated carbon is a better choice for separating flue gas and carbon molecular sieve can be a strong candidate for separating coal bed methane.
基金Graduate Innovation Project of Qinghai University for Nationalities(2021XJXS12)Graduate Innovation Project of Qinghai University for Nationalities(12M2021018).
文摘The activation effect of boric acid as an activator is good,and we investigate the best activation conditions for the boric acid impregnation method.To represent the structural characteristics and adsorption performance of the Stellera Chamaejasme based carbon molecular sieves,we use Brunner-Emmet-Teller(BET)measurements,scan-ning electron microscope(SEM),Raman spectra(Raman),X-ray diffraction(XRD),and adsorption property measurement.When the loading ratio was 0.68:1,the specific surface area was 532.21 m^(2)/g,the total pore volume was 0.24 cm 3/g,the average pore size was 1.81 nm,the adsorption value of methylene blue was 145.28 mg/g,and the adsorption value of iodine was 713.33 mg/g,the results showed that boric acid had better activation effect.The carbon molecular sieves made from Stellera Chamaejasme and activated with boric acid produce two peaks on the aperture distribution graph that are densely distributed in the micropore range.This indicates that boric acid’s pore-forming tendency is primarily micropore.
基金The work described in this paper was partially supported by grants from the Research Grant Council of the Hong Kong Special Administrative Region,China(Project Nos.HKU 17207518 and R5037-18).
文摘The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional method and presents an extended wet sieving method.The extended method uses both the steel sieves and the nylon filter cloth sieves.The apertures of the cloth sieves are smaller than 0.063 mm and equal 0.048 mm,0.038 mm,0.014 mm,0.012 mm,0.0063 mm,0.004 mm,0.003 mm,0.002 mm,and 0.001 mm,respectively.The extended method uses five steps to separate the general soil into many material sub-groups of gravel,sand,silt and clay with known particle size ranges.The complete PSD of the general soil is then calculated from the dry masses of the individual material sub-groups.The extended method is demonstrated with a general soil of completely decomposed granite(CDG)in Hong Kong,China.The silt and clay materials with different particle size ranges are further examined,checked and verified using stereomicroscopic observation,physical and chemical property tests.The results further confirm the correctness of the extended wet sieving method.
基金The authors gratefully acknowledge the financial support of Science Foundation of China University of Petroleum,Beijing(Grant No.KYJJ2012-03-03).
文摘To improve oil quality,ZSM-22/SAPO-11 composite molecular sieves were synthesized by adding ZSM-22 into a synthetic gel of SAPO-11 for n-decane hydroisomerization.The mass ratios of ZSM-22/(ZSM-22+SAPO-11)in the composite molecular sieves were optimized and the optimal ZSM-22/SAPO-11 composite(ZS-9)was obtained.The electrostatic repulsions between the ZSM-22 precursors and the SAPO-11 crystalline nuclei produced small ZSM-22 and SAPO-11 crystallites in ZS-9,which increased the specific surface area and mesopore volume and thereby exposed more acid sites.In comparison with conventional SAPO-11,ZSM-22 and their mechanical mixture,ZS-9 with smaller crystallites and the optimal medium and strong Brønsted acid centers(MSBAC)content displayed a higher yield of branched C_(10) isomers(81.6%),lower cracking selectivity(11.9%)and excellent stability.The correlation between the i-C_(10) selectivity and the MSBAC density of molecular sieves indicated that the selectivity for branched C_(10) isomers first increased and then decreased with increasing MSBAC density on the molecular sieves,and the maximum selectivity(87.7%)occurred with a density of 9.6×10^(−2)μmol m^(−2).
基金supported by the National Key R&D Program of China(Grant No.2022YFB2402604)the National Natural Science Foundation of China(21975271,22209194)+3 种基金Shandong Natural Science Foundation(ZR2020ZD07,ZR2023YQ010 and ZR2021QB106)the Taishan Scholars of Shandong Province(No.ts201511063,tsqn202211277)the Shandong Energy Institute(SEI I202127)Qingdao New Energy Shandong Laboratory(QIBEBT/SEI/QNESLS202304).
文摘Aqueous sodium-ion batteries are known for poor rechargeability because of the competitive water decomposition reactions and the high electrode solubility.Improvements have been reported by saltconcentrated and organic-hybridized electrolyte designs,however,at the expense of cost and safety.Here,we report the prolonged cycling of ASIBs in routine dilute electrolytes by employing artificial electrode coatings consisting of NaX zeolite and NaOH-neutralized perfluorinated sulfonic polymer.The as-formed composite interphase exhibits a molecularsieving effect jointly played by zeolite channels and size-shrunken ionic domains in the polymer matrix,which enables high rejection of hydrated Na^(+)ions while allowing fast dehydrated Na^(+)permeance.Applying this coating to electrode surfaces expands the electrochemical window of a practically feasible 2 mol kg^(-1) sodium trifluoromethanesulfonate aqueous electrolyte to 2.70 V and affords Na_(2)MnFe(CN)_(6)//NaTi_(2)(PO_(4))_(3) full cells with an unprecedented cycling stability of 94.9%capacity retention after 200 cycles at 1 C.Combined with emerging electrolyte modifications,this molecular-sieving interphase brings amplified benefits in long-term operation of ASIBs.
基金supported by the National Nature Science Foundation of China(No.22278179,U23A20688)the National Key Research and Development Program of China(2021YFB3802600)+3 种基金the Fundamental Research Funds for the Central Universities(JUSRP622035)National First-Class Discipline Program of Light Industry Technology and Engineering(LIFE2018-19)MOE&SAFEA for the 111 Project(B13025)Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01D030).
文摘Negatively thermo-responsive 2D membranes,which mimic the stomatal opening/closing of plants,have drawn substantial interest for tunable molecular separation processes.However,these membranes are still restricted significantly on account of low water permeability and poor dynamic tunability of 2D nanochannels under temperature stimulation.Here,we present a biomimetic negatively thermo-responsive MXene membrane by covalently grafting poly(N-isopropylacrylamide)(PNIPAm)onto MXene nanosheets.The uniformly grafted PNIPAm polymer chains can enlarge the interlayer spacings for increasing water permeability while also allowing more tunability of 2D nanochannels for enhancing the capability of gradually separating multiple molecules of different sizes.As expected,the constructed membrane exhibits ultrahigh water permeance of 95.6 L m^(-2) h^(-1) bar^(-1) at 25℃,which is eight-fold higher than the state-of-the-art negatively thermoresponsive 2D membranes.Moreover,the highly temperature-tunable 2D nanochannels enable the constructed membrane to perform excellent graded molecular sieving for dye-and antibiotic-based ternary mixtures.This strategy provides new perspectives in engineering smart 2D membrane and expands the scope of temperature-responsive membranes,showing promising applications in micro/nanofluidics and molecular separation.
文摘Carbon bridge ring compounds are widely distributed in natural products in various forms. Since these molecules have angular strain, they can change their carbon bridge ring skeleton to the stabilized structures by releasing energy under suitable conditions.
文摘The ultrastructures of the root protophleom sieve element at different developmental stages of Arabidopsis thaliana L. were investigated using the technique of high pressure freezing and freeze substitution fixing specimen. The results show that in the development of the sieve elements, the nuclei undergo typical characteristics of the programmed cell death (PCD): the nuclear envelopes form emboli, the chromatin condenses and aggregates towards the nuclear envelope, which degrades and fully disappears later. Before the nucleus degradation, neither the nuclear envelope undulation, nucleus lobe nor marked dilation (or bleb) of perinuclear space could be observed. In the cytoplasm of the mature sieve element, there are starch-like granules separately sheathed with a layer of membrane and usually with mitochondria around. These gnanules seem to provide substrates to mitochondria in their function. Small vacuoles originate from endoplasmic reticulum (ER), and no bigger vacuole was found.
文摘Ultrastructural changes in the sieve element and dense cells of nectariferous tissue during the development of floral nectary in Arabidopsis thaliana L. were investigated with transmission electron microscopy. Samples were prepared with high pressure freezing and freeze substitution techniques. The ultrastructure of dense cell was similar to that of sieve element at its early developmental stage. With the concurrent agglutination of chromatin in the nucleus, the abnormal location of organelles and the high density of cytoplasm, the ultrastructural characteristics in die dense cells of the nectariferous tissue and in the sieve element are matched with those of the programmed cell death in animal and plant reported in recent years. The disorganization of nucleus and most organelles in the differentiation of sieve elements and dense cells is closely associated with the transportation and modification of pre-nectar and the transference of nectar. This suggests that the cytological changes in sieve element and nectariferous tissue are closely associated with the nectary functional activities.
文摘A mathematical model for simulating concentric-bed and other components of molecular sieve oxygen concentrator is established. In the model, the binary Langmuir equilibrium adsorption equation is adopted to describe the adsorption performance of the adsorbent, the linear driving force (LDF) model is used to describe the mass transfer rate, and the thermal effect during adsorption is considered. The finite difference method is used in simulation and comparison. Numerical results have a reasonable agreement with the experimental research.
文摘Vapor liquid solid three phase equilibria of ethanol water 4A molecular sieve system are studied experimentally and theoritically. It is proved that the addition of adsorbent does not change the equilibrium relation between vapor and bulk liquid phase. A calculation procedure is proposed to predict vapor liquid solid (adsorbent) three phase euquilibria.
基金supported by the National Basic Research Program of China(2010CB732300)the National Natural Science Foundation of China(21103048)~~
文摘Silicoaluminophosphate(SAPO) molecular sieves doped with cobalt(Co-SAPO-5) were synthesized hydrothermally with different concentrations of Co.Each sample was characterized by X-ray diffraction,N2 adsorption-desorption,scanning electron microscopy,ultraviolet-visible spectroscopy,temperature-programmed desorption of NH3(NH3-TPD),and infrared spectrascopy of adsorbed pyridine(Py-IR).The results showed that Co was highly dispersed in the Co-SAPO-5 samples.In addition,a part of the Co content had been incorporated into the SAPO-5 framework,while the remainder existed on the surface as extra-framework Co.The surface areas of the Co-SAOP-5 samples were similar to the SAPO-5 sample.However,the pore volumes of the Co-SAOP-5 samples were lower than that of the SAOP-5 sample.As the concentration of Co increased,the pore volume gradually decreased because extra-framework cobalt oxide was present on the catalyst surface.NH3-TPD and Py-IR results revealed that the amount of Br(?)nsted acid and the total amount of acid for the Co-SAPO-5 samples were higher than that for the SAPO-5 sample.These values were also higher for samples with higher Co content.The catalytic activity of the Co-SAPO-5 samples was evaluated for the oxidation of cyclohexane with molecular oxygen.When Co was added to the SAPO-5 catalyst,the catalytic activity of the Co-SAPO-5 catalysts improved.In addition,the conversion of cyclohexane increased as the Co content in the Co-SAPO-5 catalysts increased.However,with a high conversion of cyclohexane(6.30%),the total selectivity of cyclohexanone(K) and cyclohexanol(A) decreased sharply.The K/A ratio ranged from 1.15 to 2.47.The effects of reaction conditions(i.e.,reaction temperature,reaction time,initial oxygen pressure,and the catalyst amount) on the performance of the Co-SAPO-5 catalysts have also been measured.Furthermore,the stability of the Co-SAPO-5 catalyst was explored and found to be good for the selective oxidation of cyclohexane by molecular oxygen.
文摘This paper introduces a method of sieve which can be to calculate the number of residues of the integers 1,2,...,2a sifted by n paiwise coprime numbers.
基金financial support from the National Natural Science Foundation of China (Nos. 51672186, 21676175)
文摘Samples of methane molecules grade diameter channel CHA-type molecular sieves(Chabazite-K, SAPO-34 and SSZ-13) were investigated using the adsorption separation of CH4/N2 mixtures. The isotherms recorded for CH4 and N2 follow a typical type-Ι behavior, which were fitted well with the Sips model(R2>0.999) and the selectivity was calculated using IAST theory. The results reveal that Chabazite-K has the highest selectivity(SCH4/N= 5.5).2 SSZ-13 has the largest capacity, which can adsorb up to a maximum of 30.957 cm3·g-1(STP) of CH4, due to it having the largest pore volume and surface area, but the lowest selectivity(SCH4/N2= 2.5). From the breakthrough test, we can conclude that SSZ-13 may be a suitable candidate for the recovery of CH4 from low concentration methane(CH4<20%) based on its larger pore volume and higher CH4 capacity. Chabazite-K is more suited to the separation of high concentration methane(CH4>50%) due to its higher selectivity.