Polycrystalline samples of Y0.6Gd0.4Ba2-xNbxCu3O7-y(YGBNCO) with different Nb contents (x = 0.05, 0.10, 0.15, 0.20, and 0.25) were prepared using the usual solid state reaction technique. The structure for all samples...Polycrystalline samples of Y0.6Gd0.4Ba2-xNbxCu3O7-y(YGBNCO) with different Nb contents (x = 0.05, 0.10, 0.15, 0.20, and 0.25) were prepared using the usual solid state reaction technique. The structure for all samples was characterized by XRD and SEM. The electrical properties were measured by the FPP method in the temperature range from 70 to 130 K. The lattice constant of b remains almost unchanged and a and c increases with the increase of Nb content with x ≤ 0.10. The zero resistance transition temperature and Jc decrease with increasing Nb content. But superconductivity did not suppress. As the Nb content in the samples increases, it gives a diffused phase indicating a niobium perovskite phase and it is a small amount of unidentified phase.展开更多
Polycrystalline YBa2Cu3O7-y (YBCO) and Y0.6Gd0.4Ba2-xNbxCu3O7-y (YGBNCO) compounds with 0≤x≤0.225 were synthesized using standard solid state reaction technique. The structure for all samples was characterized b...Polycrystalline YBa2Cu3O7-y (YBCO) and Y0.6Gd0.4Ba2-xNbxCu3O7-y (YGBNCO) compounds with 0≤x≤0.225 were synthesized using standard solid state reaction technique. The structure for all samples was characterized by X-ray difference (XRD) and scanning electron microscopy (SEM). The transport properties were measured by the (FPP) method in the temperature range from 70 to 130 K. As the Nb content in the samples increased, a diffused phase indicating a niobium perovskite phase and a small amount of unidentified phase appeared. With the increase of Nb content, the superconducting transition temperature Tconset increased slowly with x≤0.125, and then it remained unchanged or slowly decreased with 0.125≤x≤0.225. It could be found that there was a slow decrease of zero-resistance temperature, Tcoffset, with the increase of Nb content. The larger transition width might result from the YBa2NbO6 phase, impurity and unidentified phases of the sample due to the Nb doping.展开更多
文摘Polycrystalline samples of Y0.6Gd0.4Ba2-xNbxCu3O7-y(YGBNCO) with different Nb contents (x = 0.05, 0.10, 0.15, 0.20, and 0.25) were prepared using the usual solid state reaction technique. The structure for all samples was characterized by XRD and SEM. The electrical properties were measured by the FPP method in the temperature range from 70 to 130 K. The lattice constant of b remains almost unchanged and a and c increases with the increase of Nb content with x ≤ 0.10. The zero resistance transition temperature and Jc decrease with increasing Nb content. But superconductivity did not suppress. As the Nb content in the samples increases, it gives a diffused phase indicating a niobium perovskite phase and it is a small amount of unidentified phase.
基金Project supported by the Council of the Scientific Research Projects at Konya University
文摘Polycrystalline YBa2Cu3O7-y (YBCO) and Y0.6Gd0.4Ba2-xNbxCu3O7-y (YGBNCO) compounds with 0≤x≤0.225 were synthesized using standard solid state reaction technique. The structure for all samples was characterized by X-ray difference (XRD) and scanning electron microscopy (SEM). The transport properties were measured by the (FPP) method in the temperature range from 70 to 130 K. As the Nb content in the samples increased, a diffused phase indicating a niobium perovskite phase and a small amount of unidentified phase appeared. With the increase of Nb content, the superconducting transition temperature Tconset increased slowly with x≤0.125, and then it remained unchanged or slowly decreased with 0.125≤x≤0.225. It could be found that there was a slow decrease of zero-resistance temperature, Tcoffset, with the increase of Nb content. The larger transition width might result from the YBa2NbO6 phase, impurity and unidentified phases of the sample due to the Nb doping.