Objective To purify a low-temperature hydroxylamine oxidase (HAO) from a heterotrophic nitrifying bacterium Acinetobacter sp. Y26 and investigate the enzyme property. Methods A HAO was purified by an anion-exchange ...Objective To purify a low-temperature hydroxylamine oxidase (HAO) from a heterotrophic nitrifying bacterium Acinetobacter sp. Y26 and investigate the enzyme property. Methods A HAO was purified by an anion-exchange and gel-filtration chromatography from strain Y16. The purity and molecular mass were determined by RP-HPLC and SDS-PAGE. The HAO activity was detected by monitoring the reduction of potassium ferricyanide using hydroxylamine as substrate and ferricyanide as electron acceptor. The partial amino acid sequence was determined by mass spectrometry. Results The low-temperature HAO with a molecular mass of 61 kDa was purified from strain Y26 by an anion-exchange and gel-filtration chromatography. The enzyme exhibited an ability to oxidize hydroxylamine in wide temperature range (4-40 ℃) in vitro using hydroxylamine as substrate and ferricyanide as electron acceptor. It was stable in the temperature range of 4 to 25 ℃ and pH range of 6.0 to 8.5 with less than 30% change in its activity. The optimal temperature and pH were 15 ℃ and 7.5, respectively. Three peptides were determined by mass spectrometry which were shown to be not identical to other reported HAOs. Conclusion This is the first study to purify a low-temperature HAO from a heterotrophic nitrifier Acinetobecter sp. It differs from other reported HAOs in molecular mass and enzyme properties. The findings of the present study have suggested that the strain Y26 passes through a hydroxylamine-oxidizing process catalyzed by a low-temperature HAO for ammonium removal.展开更多
We study asymptotically fast multiplication algorithms for matrix pairs of arbitrary dimensions, and optimize the exponents of their arithmetic complexity bounds. For a large class of input matrix pairs, we improve th...We study asymptotically fast multiplication algorithms for matrix pairs of arbitrary dimensions, and optimize the exponents of their arithmetic complexity bounds. For a large class of input matrix pairs, we improve the known exponents. We also show some applications of our results: (i) we decrease from O(n 2 + n 1+o(1)logq) to O(n 1.9998 + n 1+o(1)logq) the known arithmetic complexity bound for the univariate polynomial factorization of degree n over a finite field with q elements; (ii) we decrease from 2.837 to 2.7945 the known exponent of the work and arithmetic processor bounds for fast deterministic (NC) parallel evaluation of the determinant, the characteristic polynomial, and the inverse of an n × n matrix, as well as for the solution to a nonsingular linear system of n equations; (iii) we decrease from O(m 1.575 n) to O(m 1.5356 n) the known bound for computing basic solutions to a linear programming problem with m constraints and n variables.展开更多
基金supported by grants from National Natural Science Foundation of China(51078106)Heilongjiang Provincial Science Foundation for Distinguished Youth Scholar(JC200708)Heilongjiang Provincial Finance Foundation for Basic Sciences(CZ12BZSM06)
文摘Objective To purify a low-temperature hydroxylamine oxidase (HAO) from a heterotrophic nitrifying bacterium Acinetobacter sp. Y26 and investigate the enzyme property. Methods A HAO was purified by an anion-exchange and gel-filtration chromatography from strain Y16. The purity and molecular mass were determined by RP-HPLC and SDS-PAGE. The HAO activity was detected by monitoring the reduction of potassium ferricyanide using hydroxylamine as substrate and ferricyanide as electron acceptor. The partial amino acid sequence was determined by mass spectrometry. Results The low-temperature HAO with a molecular mass of 61 kDa was purified from strain Y26 by an anion-exchange and gel-filtration chromatography. The enzyme exhibited an ability to oxidize hydroxylamine in wide temperature range (4-40 ℃) in vitro using hydroxylamine as substrate and ferricyanide as electron acceptor. It was stable in the temperature range of 4 to 25 ℃ and pH range of 6.0 to 8.5 with less than 30% change in its activity. The optimal temperature and pH were 15 ℃ and 7.5, respectively. Three peptides were determined by mass spectrometry which were shown to be not identical to other reported HAOs. Conclusion This is the first study to purify a low-temperature HAO from a heterotrophic nitrifier Acinetobecter sp. It differs from other reported HAOs in molecular mass and enzyme properties. The findings of the present study have suggested that the strain Y26 passes through a hydroxylamine-oxidizing process catalyzed by a low-temperature HAO for ammonium removal.
文摘We study asymptotically fast multiplication algorithms for matrix pairs of arbitrary dimensions, and optimize the exponents of their arithmetic complexity bounds. For a large class of input matrix pairs, we improve the known exponents. We also show some applications of our results: (i) we decrease from O(n 2 + n 1+o(1)logq) to O(n 1.9998 + n 1+o(1)logq) the known arithmetic complexity bound for the univariate polynomial factorization of degree n over a finite field with q elements; (ii) we decrease from 2.837 to 2.7945 the known exponent of the work and arithmetic processor bounds for fast deterministic (NC) parallel evaluation of the determinant, the characteristic polynomial, and the inverse of an n × n matrix, as well as for the solution to a nonsingular linear system of n equations; (iii) we decrease from O(m 1.575 n) to O(m 1.5356 n) the known bound for computing basic solutions to a linear programming problem with m constraints and n variables.