Lutetium oxide nanocrystals codoped with Tm3+ and Yb3+ were synthesized by the reverse-like co-precipitation method, using ammonium hydrogen carbonate as precipitant. Effects of the Tm3+, Yb3+ molar fractions and ...Lutetium oxide nanocrystals codoped with Tm3+ and Yb3+ were synthesized by the reverse-like co-precipitation method, using ammonium hydrogen carbonate as precipitant. Effects of the Tm3+, Yb3+ molar fractions and calcination temperature on the structural and upconversion luminescent properties of the Lu2O3 nanocrystals were investigated. The XRD results show that all the prepared nanocrystals can be readily indexed to pure cubic phase of Lu2O3 and indicate good crystallinity. The experimental results show that concentration quenching occurs when the mole fraction of Tm3+ is above 0.2%. The optimal Tm3+ and Yb3+ doped molar fractions are 0.2% and 2%, respectively. The strong blue (490 nm) and the weak red (653 nm) emissions from the prepared nanocrystals were observed under 980 nm laser excitation, and attributed to the 1G4→3H6 and IG4→3F4 transitions of Tm3+, respectively. Power-dependent study reveals that the 1G4 levels of Tm3+ can be populated by three-step energy transfer process. The upconversion emission intensities of 490 nm and 653 nm increase gradually with the increase of calcination temperature. The enhancement of the upconversion luminescence is suggested to be the consequence of reducing number of OH- groups and the enlarged nanoerystal size.展开更多
A series of Er3+, Tm3+ and Yb3+ doped Gd3Ga5O12 nanocrystals were prepared by a combustion method. The X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and upconversion (UC) emissi...A series of Er3+, Tm3+ and Yb3+ doped Gd3Ga5O12 nanocrystals were prepared by a combustion method. The X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and upconversion (UC) emission spectra were used to characterize the samples. The results of XRD indicate that Gd3Ga5O12:Er3+, Tm3+, Yb3+ nanocrystals with cubic phase can be obtained. Under the excitation of a 980 nm laser, the different rare earth ions doped Gd3Ga5O12 nanoerystals show upconversion luminescence involving the green emission attributed to the ^2H11/2→^4I15/2, 4^S3/2→^4I15/2 transitions of Er3+ ions, respectively, the red emissions assigned to the ^4F9/2→^4I15/2 transitions of Er3+ ions and the ^1G4→^3F4 as well as 3F2,3→^3H6 transitions of Tm3+ ions, respectively, the blue emission attributed to ^1G4→^3H6 transitions of Tm3+ ions, and the near-infrared assigned to the ^3H4→^3H6 transitions of Tm3+ ions. The CIE coordinates for the samples are calculated. The dependence of their upconversion luminescence properties on Yb3+ ion concentration is investieated.展开更多
Yb3+/Tm3+ co-doped Gd3Ga5O12 single crystal with a dimension of Φ30mm×20mm was grown successfully by Czochralski method.The absorption spectrum was recorded at room temperature and used to calculate the absorp...Yb3+/Tm3+ co-doped Gd3Ga5O12 single crystal with a dimension of Φ30mm×20mm was grown successfully by Czochralski method.The absorption spectrum was recorded at room temperature and used to calculate the absorption cross-section.Based on the Judd-Ofelt(J-O) theory,we obtained the three intensity parameters and spectral parameters of this crystal,such as the line strengths,oscillator strengths,radiative probabilities and radiative lifetimes as well as the fluorescent branching ratios.Room temperature fluorescence spectra and luminescence decay curves were recorded.The energy transfer between Yb3+-Tm3+ was observed and the mechanism was discussed.The stimulated emission cross-section of the 3F4→3H6 transition was calculated by the Füchtbauer-Ladenburg(F-L) equation.The potential laser gains for this transition were also investigated.This crystal is promising as a tunable infrared laser crystal at 2.0 μm.展开更多
基金Foundation item: Projects (10704090,10774140,11047147)supported by the National Natural Science Foundation of ChinaProjects (KJ090514,KJTD201016)supported by the Natural Science Foundation of Chongqing Municipal Education Commission,China
文摘Lutetium oxide nanocrystals codoped with Tm3+ and Yb3+ were synthesized by the reverse-like co-precipitation method, using ammonium hydrogen carbonate as precipitant. Effects of the Tm3+, Yb3+ molar fractions and calcination temperature on the structural and upconversion luminescent properties of the Lu2O3 nanocrystals were investigated. The XRD results show that all the prepared nanocrystals can be readily indexed to pure cubic phase of Lu2O3 and indicate good crystallinity. The experimental results show that concentration quenching occurs when the mole fraction of Tm3+ is above 0.2%. The optimal Tm3+ and Yb3+ doped molar fractions are 0.2% and 2%, respectively. The strong blue (490 nm) and the weak red (653 nm) emissions from the prepared nanocrystals were observed under 980 nm laser excitation, and attributed to the 1G4→3H6 and IG4→3F4 transitions of Tm3+, respectively. Power-dependent study reveals that the 1G4 levels of Tm3+ can be populated by three-step energy transfer process. The upconversion emission intensities of 490 nm and 653 nm increase gradually with the increase of calcination temperature. The enhancement of the upconversion luminescence is suggested to be the consequence of reducing number of OH- groups and the enlarged nanoerystal size.
基金Funded by the Science and Technology Research Project of Department of Education of Liaoning Province,China(No.L2011063)
文摘A series of Er3+, Tm3+ and Yb3+ doped Gd3Ga5O12 nanocrystals were prepared by a combustion method. The X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and upconversion (UC) emission spectra were used to characterize the samples. The results of XRD indicate that Gd3Ga5O12:Er3+, Tm3+, Yb3+ nanocrystals with cubic phase can be obtained. Under the excitation of a 980 nm laser, the different rare earth ions doped Gd3Ga5O12 nanoerystals show upconversion luminescence involving the green emission attributed to the ^2H11/2→^4I15/2, 4^S3/2→^4I15/2 transitions of Er3+ ions, respectively, the red emissions assigned to the ^4F9/2→^4I15/2 transitions of Er3+ ions and the ^1G4→^3F4 as well as 3F2,3→^3H6 transitions of Tm3+ ions, respectively, the blue emission attributed to ^1G4→^3H6 transitions of Tm3+ ions, and the near-infrared assigned to the ^3H4→^3H6 transitions of Tm3+ ions. The CIE coordinates for the samples are calculated. The dependence of their upconversion luminescence properties on Yb3+ ion concentration is investieated.
基金Supported by the Science & Technology Plan Project of Fujian Province (Nos 2005HZ1026 and 2007H0037)the Great Projects of FJIRSM (SZD08001-2 and SZD09001)the Open Science Foundation from Key Laboratory of Optoelectronic Materials Chemistry and Physics of CAS (No 2009KL004)
文摘Yb3+/Tm3+ co-doped Gd3Ga5O12 single crystal with a dimension of Φ30mm×20mm was grown successfully by Czochralski method.The absorption spectrum was recorded at room temperature and used to calculate the absorption cross-section.Based on the Judd-Ofelt(J-O) theory,we obtained the three intensity parameters and spectral parameters of this crystal,such as the line strengths,oscillator strengths,radiative probabilities and radiative lifetimes as well as the fluorescent branching ratios.Room temperature fluorescence spectra and luminescence decay curves were recorded.The energy transfer between Yb3+-Tm3+ was observed and the mechanism was discussed.The stimulated emission cross-section of the 3F4→3H6 transition was calculated by the Füchtbauer-Ladenburg(F-L) equation.The potential laser gains for this transition were also investigated.This crystal is promising as a tunable infrared laser crystal at 2.0 μm.