The sub-micron sized YAG : Ce phosphors were synthesized via a modified sol-gel method by peptizing nano-pesudoboehmite particulate. It is found that YAG phase from the dried gel powders appears at 1000 ℃ then the p...The sub-micron sized YAG : Ce phosphors were synthesized via a modified sol-gel method by peptizing nano-pesudoboehmite particulate. It is found that YAG phase from the dried gel powders appears at 1000 ℃ then the pure YAG phase exists at a relatively lower sintering temperature of 1400 ℃. The smaller sizes of phosphors in the ranges of 1 - 3 μm are obtained due to the contribution of seeding effects of nano-sized alumina particles to strengthen each step of the processes. Both the excitation and emission spectra of photoluminescence of the phosphor obtained at 1400 ℃ meet well with the spectroscopic requirements of the WLED phosphors.展开更多
Cerium and europium codoped yttrium aluminum garnet(YAG:Ce,Eu) nanophosphors were prepared by sol-gel method.We systematically explored the structure,composition,morphology and photoluminescence(PL) properties by...Cerium and europium codoped yttrium aluminum garnet(YAG:Ce,Eu) nanophosphors were prepared by sol-gel method.We systematically explored the structure,composition,morphology and photoluminescence(PL) properties by using X-ray diffraction,scanning electron microscope,high resolution transmission electron microscope,energy dispersive spectrometer,photoluminescence emission and excitation spectra techniques,and focused on clarifying the change of local structure surrounding Ce^3+ ions by utilizing advanced quantitative ^27Al magic angle spinning nuclear magnetic resonance spectroscopy.The results show that the lattice constant slightly increases as the Ce^3+ and Eu^3+ ions incorporate,and the geometric distortion of local structure surrounding Ce^(3+) activator introduced by the incorporated Eu^(3+) coactivator causes the variation of crystal field,which results in red shift of Ce^3+ PL emitting in YAG:Ce,Eu nanophosphor.Furthermore,the YAG:Ce,Eu nanophosphors could exhibit several sharp and narrow ^5D0 → ^7FJ(J = 1-4) emissions of Eu^3+ ion besides the classic broad ^5d1 → ^4f(^2F(5/2),^2F(7/2)) emissions of Ce^3+ ion under near ultraviolet(UV) excitation.展开更多
Ultra-fine Ce:YAG phosphors were prepared by homogeneous precipitation under microwave irradiation method . The formation of Ce: YAG was investigated by means of XRD and DTA/TG. The purified YAG crystallized phase was...Ultra-fine Ce:YAG phosphors were prepared by homogeneous precipitation under microwave irradiation method . The formation of Ce: YAG was investigated by means of XRD and DTA/TG. The purified YAG crystallized phase was obtained at a lower temperature (1100℃). Basically spherical Ce:YAG powders were indicated from TEM images, and the size of the particles is about 80 nm. Two peaks of 436 and 473 nm can be seen from the excitation spectrum in the range of 402 -510 nm. A broad emission band located at 480 ~ 630 nm shows the phosphors prepared by this method have good emission properties.展开更多
The doping effects of La^3+, Gd^3+ and Lu^3+ on the crystal structure and luminescence properties of (Yo96-x LnxCe0.04)3Al5O12(Ln = Gd, La, Lu) phosphors were studied. The X-ray diffraction patterns presented t...The doping effects of La^3+, Gd^3+ and Lu^3+ on the crystal structure and luminescence properties of (Yo96-x LnxCe0.04)3Al5O12(Ln = Gd, La, Lu) phosphors were studied. The X-ray diffraction patterns presented that with the inerease of the doping concentrations of La^3+ and Gd^3+ ions, the d-value of (Y0.96-xLnxCe0.04)3Al5O12 (Ln = Gd, La) inereased and the larger the doping ion, the stronger the effect would be. The doping amount causing phase transition in (Y0.96-xLnxCe0.04)3Al5O12 decreased with the inerease of the ionic radii of the doping lanthanide ions (La^3+: 0.106 nm, Gd^3+: 0. 094 nm, Lu^3+ : 0.083 nm). The bigger doping ion of Gd^3+ made the emission of (Y0.96-xGdxCe0.04)3Al5O12 move to red spectral region, but the smaller one of Lu^3+ made it blue.展开更多
Ce3+-activated yttrium aluminum garnet (YAG) was prepared by the solid-state reaction, in which H3BO3, LiF, NaF, KF and BaF2 were used as the fluxes. The effect of fluxes on optical properties of phosphors was stud...Ce3+-activated yttrium aluminum garnet (YAG) was prepared by the solid-state reaction, in which H3BO3, LiF, NaF, KF and BaF2 were used as the fluxes. The effect of fluxes on optical properties of phosphors was studied in detail, especially the fluxes of alkali fluorides, which could enhance the emission intensity and change the wavelength of emission peaks. Among these YAG:Ce phosphors, the phosphor sintered with H3BO3 and NaF exhibited the strongest emission. The emission peaks of phosphors prepared with fluxes from LiF to KF were shifted to long wavelength. The effect of NaF concentration on the emission intensity of YAG:Ce was also investigated. The value of emission intensity reached the maximum when the concentration of NaF was 0.5%.展开更多
YAG: Ce^3 + phosphor particles were prepared using polyacrylamide gel method. The structure evolution of powders during annealing process was followed by X-ray diffraction determination. It is found that some interm...YAG: Ce^3 + phosphor particles were prepared using polyacrylamide gel method. The structure evolution of powders during annealing process was followed by X-ray diffraction determination. It is found that some intermediate phases, including θ-Al2O3, YAM and YAP, are formed when calcining polyacrylamide gel, however, the pure YAG phase can be formed directly when calcining polyacrylamide gel with α-Al2O3 as seed crystal. These facts show that the existence of α- Al2O3 seed crystal can block the formation of θ-Al2O3, YAM and YAP, and accelerate its reaction with Y2O3 to form YAG phase directly at lower temperature. The emission peak of prepared YAG : Ce^3 + phosphor is wide with maximum at 550 nm and the exitation band has two peaks, the major one is around at 460 nm, which matches the blue emission of GaN LED and is suitable for the assemble of white LED. Some fluxes can enhance the photoluminescence intensity of phosphor particles, that can be attributed both to the improvement of crystallization processes of YAG and to the stabilization of trivalence cerium ion in YAG:Ce^3 +.展开更多
Spherical YAG:Ce^3+ phosphor particles with narrow size distribution were prepared by spray pyrolysis. The effects of the concentration of solution, the flow rate of cartier gas and the annexing temperature on the p...Spherical YAG:Ce^3+ phosphor particles with narrow size distribution were prepared by spray pyrolysis. The effects of the concentration of solution, the flow rate of cartier gas and the annexing temperature on the phosphor morphology were studied. The productivity of precursor particles shows a trend of drop after rising with the increase of concentration Raising the flow rate of nitrogen can improve the productivity of the precursor particles. Phosphor prepared by spray pyrolysis has obviously higher emission intensity than that synthesized by solid state reaction, spray pyrolysis makes Ce^3+ ions well distributed in the crystal lattice as the luminescent centers, and phosphor particles have regular sphericity and narrow size distribution.展开更多
YAG:Ce phosphor was synthesized by a novel simple method,wherein the admixture of three raw materials(Y2O3,α-Al2O3 and CeO2) were first acidified by diluted nitric acid to prepare a precursor,followed by a high tempe...YAG:Ce phosphor was synthesized by a novel simple method,wherein the admixture of three raw materials(Y2O3,α-Al2O3 and CeO2) were first acidified by diluted nitric acid to prepare a precursor,followed by a high temperature heating treatment of the obtained precursor under reductive atmosphere.Through XRD measurement and SEM observation,it was found that Y2O3,one of the raw material,was firstly dissolved into the diluted nitric acid,and then recrystallized on the surface of both α-Al2O3 and CeO2 to form a no...展开更多
A series of YAG:Ce,Tb phosphors were synthesized by vacuum sintering method.Moreover,their spectral properties,thermal quenching behaviors and color rendering properties were investigated systematically.The photolumi...A series of YAG:Ce,Tb phosphors were synthesized by vacuum sintering method.Moreover,their spectral properties,thermal quenching behaviors and color rendering properties were investigated systematically.The photoluminescence emission spectra of YAG:Ce,Tb show a great red shift compared with that of YAG:Ce.Direct energy transfer from Tb^(3+) to Ce^(3+) ions is verified based on the analysis of different photoluminescence spectra.The quenching temperature for Tb^(3+)-doped YAG:Ce phosphors is about 490 K.The thermal activation energy is estimated to be 0.18 and 0.291 eV for Tb^(3+)-doped YAG:Ce and YAG:Ce phosphors,respectively.The smaller activation energy for Tb^(3+)-doped YAG:Ce means a more rapid nonradiative transition from 5d to 4f state,thus resulting in the lower quenching temperature.In addition,white LEDs with improved color rendering properties are achieved by using modified YAG:Ce,Tb phosphors.展开更多
Nanosized cerium-doped lutetium aluminum garnet (LuAG:Ce) phosphors were prepared by nitrate-citrate solgel combustion process using 1:1 ratio of the citrate:nitrate. The prepared LuAG:Ce phosphors were characte...Nanosized cerium-doped lutetium aluminum garnet (LuAG:Ce) phosphors were prepared by nitrate-citrate solgel combustion process using 1:1 ratio of the citrate:nitrate. The prepared LuAG:Ce phosphors were characterized by XRD, TEM, photoluminescence and radioluminescence spectra excited by UV and X-ray, respectively. The purified crystalline phase of LuAG:Ce was obtained at 900 ℃ by directly crystallizing from amorphous materials. The resultant Lu- AG:Ce phosphors were uniform and had good dispersivity with an average particle size of about 30 urn. Both photoluminescence and radioluminescence were well-known Ce^3+ emissions located in the range of 470 -600 nm consisting of two emission bands because of the transition from the lowest 5d excited state (2D) to the 4f ground state of Ce^3+, which matched well with the sensitivity curve of the Si-photodiode. There was a little red shift for the emission components from the UV-excited emission spectrum to the X-ray-excited emission spectrum. The fast scintillation decay component of 26 ns satisfies the requirements of fast scintillators.展开更多
A high-performance LED-side-pumped two-rod Nd,Ce:YAG laser with continuous-wave(CW) and acousto–optical(A-O) Q-switched operation is demonstrated in this work. A symmetrically shaped flat–flat cavity with two identi...A high-performance LED-side-pumped two-rod Nd,Ce:YAG laser with continuous-wave(CW) and acousto–optical(A-O) Q-switched operation is demonstrated in this work. A symmetrically shaped flat–flat cavity with two identical LEDside-pumped laser modules is employed for power scalability. In the CW regime, the maximum output average power of laser at 1064 nm is 4.41 W, corresponding to a maximum optical conversion efficiency of 5.3% and a slope efficiency is 12.4%. In the active Q-switched regime, the pulse energy of laser reaches as high as 0.89 m J at a repetition rate of 800 Hz with a pulse width of 457.2 ns, the corresponding highest peak output power is 1.94 k W and the M~2 factor is measured to be about 8.8. To the best of the authors' knowledge, this is the first demonstration and the highest performance of a CW LED-side-pumped two-rod laser Nd,Ce:YAG with Watt-level output reported so far.展开更多
The well crystalline YAG:Ce^3+ phosphor was synthesized by sold-state method, and the temperature dependence of excitation and emission spectra of YAG:Ce^3+ phosphor were investigated in the temperature range from...The well crystalline YAG:Ce^3+ phosphor was synthesized by sold-state method, and the temperature dependence of excitation and emission spectra of YAG:Ce^3+ phosphor were investigated in the temperature range from room temperature to 573 K. With temperature increasing, it was noted that the emission intensity of as-repared phosphors decreased considerably more rapidly when pumped by 460 nm than by 340 nm. The temperature-intensity curves under different excitation wavelengths were obtained using an Arrhenius function, and the corresponding activation energies were also obtained respectively. Thus, the experimental phenomenon was discussed in terms of nonradiative decay rate. The effects of as-prepared phosphors on the performance of the white LED with changing temperature were also studied.展开更多
A novel synthesis process, based on the polyacrylamide gel method, was used to prepare Ce-doped YAG phosphor powders. Effects of heat treatment parameters, temperature and holding time, the fluxes, and atmosphere on m...A novel synthesis process, based on the polyacrylamide gel method, was used to prepare Ce-doped YAG phosphor powders. Effects of heat treatment parameters, temperature and holding time, the fluxes, and atmosphere on microstructure and particle morphology as well as luminescent properties of YAG:Ce3+ phosphor powders were studied by X-ray powder diffractometry, scanning electron microscopy, and fluorescence spectrophotometry. The results show that the formation temperature (1 000 ℃) of pure YAG phase is significant low when being synthesized by the polyacrylamide gel method, compared with solid-state reaction. For luminescent properties, the intensity of emission of YAG:Ce3+ phosphor increases steadily with increasing temperature from 900 ℃ to 1 300 ℃ and prolonging holding time from 100 min to 400 min. But blue shift phenomenon is observed for 400 min calcination. Fluxes as BaF2 and H3BO3 can enhance the intensity of emission of phosphor due to the improvement of crystallization of YAG and the stabilization of trivalence cerium ion in YAG host lattice at high temperature. Weak reduction atmosphere can contribute to improvement of the emission intensity of YAG:Ce3+ phosphor powders.展开更多
Sr2Al2SiO7:Ce^3+, Tb^3+ white emitting phosphors were fabricated using the sol-gel method. X-Ray Powder Diffraction (XRD) analysis confirmed the formation of Sr2Al2SiO7:Ce^3+, Tb^3+. Scanning Electron Microsco...Sr2Al2SiO7:Ce^3+, Tb^3+ white emitting phosphors were fabricated using the sol-gel method. X-Ray Powder Diffraction (XRD) analysis confirmed the formation of Sr2Al2SiO7:Ce^3+, Tb^3+. Scanning Electron Microscopy (SEM) observation indicated that the microstructure of the phosphor consisted of regular fine grains with an average size of about 0.5-1 μm. Luminescence properties were analyzed by measuring the photoluminescence spectra. The Ce^3+, Tb^3+-codoped Sr2Al2SiO7 phosphors showed four main emission peaks: one at 414 nm for Ce^3+ and three at 482, 543, and 588 nm for Tb^3+. The emission spectra of the samples with different doping concentrations showed that the Tb^3+ emission was dominant because of the persistent energy transfer from Ce^3+. The decay characteristic was better than that prepared by the solid-state process in the comparable condition. The codoped phosphor displayed long persistent white phosphorescence.展开更多
In order to confirm the relationship between the luminescence and the ratio of Ce3+/Ce4+ more clearly, a series of YAG:Ce3+ (Yttrium Aluminum Garnet, Y2.94Al5O12:0.06Ce3+) phosphors were pre- pared under different sin...In order to confirm the relationship between the luminescence and the ratio of Ce3+/Ce4+ more clearly, a series of YAG:Ce3+ (Yttrium Aluminum Garnet, Y2.94Al5O12:0.06Ce3+) phosphors were pre- pared under different sintering atmosphere. A semi-quantitative analysis based on X-ray photoe-lectron spectroscopy (XPS) was introduced to study the mole ratio of Ce3+/Ce4+ in the as-synthesized YAG:Ce3+ phosphors. The results indicated that the percentage of Ce3+/(Ce3+ + Ce4+) reached 88.46% under the reduction atmosphere. The emission intensity of YAG:Ce3+ phosphors was in-creased significantly with the increasing of Ce3+ concentration.展开更多
文摘The sub-micron sized YAG : Ce phosphors were synthesized via a modified sol-gel method by peptizing nano-pesudoboehmite particulate. It is found that YAG phase from the dried gel powders appears at 1000 ℃ then the pure YAG phase exists at a relatively lower sintering temperature of 1400 ℃. The smaller sizes of phosphors in the ranges of 1 - 3 μm are obtained due to the contribution of seeding effects of nano-sized alumina particles to strengthen each step of the processes. Both the excitation and emission spectra of photoluminescence of the phosphor obtained at 1400 ℃ meet well with the spectroscopic requirements of the WLED phosphors.
基金Financial support from the NNSF of China(No.51171007 and 51271009)
文摘Cerium and europium codoped yttrium aluminum garnet(YAG:Ce,Eu) nanophosphors were prepared by sol-gel method.We systematically explored the structure,composition,morphology and photoluminescence(PL) properties by using X-ray diffraction,scanning electron microscope,high resolution transmission electron microscope,energy dispersive spectrometer,photoluminescence emission and excitation spectra techniques,and focused on clarifying the change of local structure surrounding Ce^3+ ions by utilizing advanced quantitative ^27Al magic angle spinning nuclear magnetic resonance spectroscopy.The results show that the lattice constant slightly increases as the Ce^3+ and Eu^3+ ions incorporate,and the geometric distortion of local structure surrounding Ce^(3+) activator introduced by the incorporated Eu^(3+) coactivator causes the variation of crystal field,which results in red shift of Ce^3+ PL emitting in YAG:Ce,Eu nanophosphor.Furthermore,the YAG:Ce,Eu nanophosphors could exhibit several sharp and narrow ^5D0 → ^7FJ(J = 1-4) emissions of Eu^3+ ion besides the classic broad ^5d1 → ^4f(^2F(5/2),^2F(7/2)) emissions of Ce^3+ ion under near ultraviolet(UV) excitation.
基金Project supported by Foundation for the Excellent Middle-Aged or Young Scientists of Shandong Province (02BS049)
文摘Ultra-fine Ce:YAG phosphors were prepared by homogeneous precipitation under microwave irradiation method . The formation of Ce: YAG was investigated by means of XRD and DTA/TG. The purified YAG crystallized phase was obtained at a lower temperature (1100℃). Basically spherical Ce:YAG powders were indicated from TEM images, and the size of the particles is about 80 nm. Two peaks of 436 and 473 nm can be seen from the excitation spectrum in the range of 402 -510 nm. A broad emission band located at 480 ~ 630 nm shows the phosphors prepared by this method have good emission properties.
基金Project supported by the National Natural Science Foundation of China (20071031)
文摘The doping effects of La^3+, Gd^3+ and Lu^3+ on the crystal structure and luminescence properties of (Yo96-x LnxCe0.04)3Al5O12(Ln = Gd, La, Lu) phosphors were studied. The X-ray diffraction patterns presented that with the inerease of the doping concentrations of La^3+ and Gd^3+ ions, the d-value of (Y0.96-xLnxCe0.04)3Al5O12 (Ln = Gd, La) inereased and the larger the doping ion, the stronger the effect would be. The doping amount causing phase transition in (Y0.96-xLnxCe0.04)3Al5O12 decreased with the inerease of the ionic radii of the doping lanthanide ions (La^3+: 0.106 nm, Gd^3+: 0. 094 nm, Lu^3+ : 0.083 nm). The bigger doping ion of Gd^3+ made the emission of (Y0.96-xGdxCe0.04)3Al5O12 move to red spectral region, but the smaller one of Lu^3+ made it blue.
基金supported by the Science Technology Project of Zhejiang Province (2008C21153)the National Natural Science Foundation of China (60508014 and 50772102)+1 种基金Program for New Century Excellent Talents in University (NCET-07-0786)the Nature Science Foundation of Zhejiang Province (R406007)
文摘Ce3+-activated yttrium aluminum garnet (YAG) was prepared by the solid-state reaction, in which H3BO3, LiF, NaF, KF and BaF2 were used as the fluxes. The effect of fluxes on optical properties of phosphors was studied in detail, especially the fluxes of alkali fluorides, which could enhance the emission intensity and change the wavelength of emission peaks. Among these YAG:Ce phosphors, the phosphor sintered with H3BO3 and NaF exhibited the strongest emission. The emission peaks of phosphors prepared with fluxes from LiF to KF were shifted to long wavelength. The effect of NaF concentration on the emission intensity of YAG:Ce was also investigated. The value of emission intensity reached the maximum when the concentration of NaF was 0.5%.
文摘YAG: Ce^3 + phosphor particles were prepared using polyacrylamide gel method. The structure evolution of powders during annealing process was followed by X-ray diffraction determination. It is found that some intermediate phases, including θ-Al2O3, YAM and YAP, are formed when calcining polyacrylamide gel, however, the pure YAG phase can be formed directly when calcining polyacrylamide gel with α-Al2O3 as seed crystal. These facts show that the existence of α- Al2O3 seed crystal can block the formation of θ-Al2O3, YAM and YAP, and accelerate its reaction with Y2O3 to form YAG phase directly at lower temperature. The emission peak of prepared YAG : Ce^3 + phosphor is wide with maximum at 550 nm and the exitation band has two peaks, the major one is around at 460 nm, which matches the blue emission of GaN LED and is suitable for the assemble of white LED. Some fluxes can enhance the photoluminescence intensity of phosphor particles, that can be attributed both to the improvement of crystallization processes of YAG and to the stabilization of trivalence cerium ion in YAG:Ce^3 +.
基金Project supported by National "The Tenth Five-Year"plan (2003BA316A01-03-05) and "The Tenth Five-Year"Plan(BE2004021) of Jiangsu provicce
文摘Spherical YAG:Ce^3+ phosphor particles with narrow size distribution were prepared by spray pyrolysis. The effects of the concentration of solution, the flow rate of cartier gas and the annexing temperature on the phosphor morphology were studied. The productivity of precursor particles shows a trend of drop after rising with the increase of concentration Raising the flow rate of nitrogen can improve the productivity of the precursor particles. Phosphor prepared by spray pyrolysis has obviously higher emission intensity than that synthesized by solid state reaction, spray pyrolysis makes Ce^3+ ions well distributed in the crystal lattice as the luminescent centers, and phosphor particles have regular sphericity and narrow size distribution.
基金supported by the Ministry of Science and Technology of China (2006AA03A133)the Foundation of International Joint Research of Beijing (2007N08)
文摘YAG:Ce phosphor was synthesized by a novel simple method,wherein the admixture of three raw materials(Y2O3,α-Al2O3 and CeO2) were first acidified by diluted nitric acid to prepare a precursor,followed by a high temperature heating treatment of the obtained precursor under reductive atmosphere.Through XRD measurement and SEM observation,it was found that Y2O3,one of the raw material,was firstly dissolved into the diluted nitric acid,and then recrystallized on the surface of both α-Al2O3 and CeO2 to form a no...
基金supported by the National Natural Science Foundation of China(51272282,51302311)the Beijing Committee of Science and Technology(Z13111000280000)the Education Commission of Beijing(2011010329)
文摘A series of YAG:Ce,Tb phosphors were synthesized by vacuum sintering method.Moreover,their spectral properties,thermal quenching behaviors and color rendering properties were investigated systematically.The photoluminescence emission spectra of YAG:Ce,Tb show a great red shift compared with that of YAG:Ce.Direct energy transfer from Tb^(3+) to Ce^(3+) ions is verified based on the analysis of different photoluminescence spectra.The quenching temperature for Tb^(3+)-doped YAG:Ce phosphors is about 490 K.The thermal activation energy is estimated to be 0.18 and 0.291 eV for Tb^(3+)-doped YAG:Ce and YAG:Ce phosphors,respectively.The smaller activation energy for Tb^(3+)-doped YAG:Ce means a more rapid nonradiative transition from 5d to 4f state,thus resulting in the lower quenching temperature.In addition,white LEDs with improved color rendering properties are achieved by using modified YAG:Ce,Tb phosphors.
基金Project supported by the National Defence Fundamental Research Project of China
文摘Nanosized cerium-doped lutetium aluminum garnet (LuAG:Ce) phosphors were prepared by nitrate-citrate solgel combustion process using 1:1 ratio of the citrate:nitrate. The prepared LuAG:Ce phosphors were characterized by XRD, TEM, photoluminescence and radioluminescence spectra excited by UV and X-ray, respectively. The purified crystalline phase of LuAG:Ce was obtained at 900 ℃ by directly crystallizing from amorphous materials. The resultant Lu- AG:Ce phosphors were uniform and had good dispersivity with an average particle size of about 30 urn. Both photoluminescence and radioluminescence were well-known Ce^3+ emissions located in the range of 470 -600 nm consisting of two emission bands because of the transition from the lowest 5d excited state (2D) to the 4f ground state of Ce^3+, which matched well with the sensitivity curve of the Si-photodiode. There was a little red shift for the emission components from the UV-excited emission spectrum to the X-ray-excited emission spectrum. The fast scintillation decay component of 26 ns satisfies the requirements of fast scintillators.
基金Project supported by the Fund from Nanjing University of Posts and Telecommunications,China(Grant Nos.JUH219002 and JUH219007)the Key Research and Development Program of Shandong Province,China(Grant No.2021CXGC010202)。
文摘A high-performance LED-side-pumped two-rod Nd,Ce:YAG laser with continuous-wave(CW) and acousto–optical(A-O) Q-switched operation is demonstrated in this work. A symmetrically shaped flat–flat cavity with two identical LEDside-pumped laser modules is employed for power scalability. In the CW regime, the maximum output average power of laser at 1064 nm is 4.41 W, corresponding to a maximum optical conversion efficiency of 5.3% and a slope efficiency is 12.4%. In the active Q-switched regime, the pulse energy of laser reaches as high as 0.89 m J at a repetition rate of 800 Hz with a pulse width of 457.2 ns, the corresponding highest peak output power is 1.94 k W and the M~2 factor is measured to be about 8.8. To the best of the authors' knowledge, this is the first demonstration and the highest performance of a CW LED-side-pumped two-rod laser Nd,Ce:YAG with Watt-level output reported so far.
基金the Key Technologies R&D Program of Shandong Province (2006gg2201014)Tianjin Natural Science Foundation (07JCYBJC06400)Tianjin Education Committee Science and Technology Development Foundation
文摘The well crystalline YAG:Ce^3+ phosphor was synthesized by sold-state method, and the temperature dependence of excitation and emission spectra of YAG:Ce^3+ phosphor were investigated in the temperature range from room temperature to 573 K. With temperature increasing, it was noted that the emission intensity of as-repared phosphors decreased considerably more rapidly when pumped by 460 nm than by 340 nm. The temperature-intensity curves under different excitation wavelengths were obtained using an Arrhenius function, and the corresponding activation energies were also obtained respectively. Thus, the experimental phenomenon was discussed in terms of nonradiative decay rate. The effects of as-prepared phosphors on the performance of the white LED with changing temperature were also studied.
文摘A novel synthesis process, based on the polyacrylamide gel method, was used to prepare Ce-doped YAG phosphor powders. Effects of heat treatment parameters, temperature and holding time, the fluxes, and atmosphere on microstructure and particle morphology as well as luminescent properties of YAG:Ce3+ phosphor powders were studied by X-ray powder diffractometry, scanning electron microscopy, and fluorescence spectrophotometry. The results show that the formation temperature (1 000 ℃) of pure YAG phase is significant low when being synthesized by the polyacrylamide gel method, compared with solid-state reaction. For luminescent properties, the intensity of emission of YAG:Ce3+ phosphor increases steadily with increasing temperature from 900 ℃ to 1 300 ℃ and prolonging holding time from 100 min to 400 min. But blue shift phenomenon is observed for 400 min calcination. Fluxes as BaF2 and H3BO3 can enhance the intensity of emission of phosphor due to the improvement of crystallization of YAG and the stabilization of trivalence cerium ion in YAG host lattice at high temperature. Weak reduction atmosphere can contribute to improvement of the emission intensity of YAG:Ce3+ phosphor powders.
基金the National Natural Science Foundation of China (20376009)the Liaoning Natural Science Foundation (20032129) of China
文摘Sr2Al2SiO7:Ce^3+, Tb^3+ white emitting phosphors were fabricated using the sol-gel method. X-Ray Powder Diffraction (XRD) analysis confirmed the formation of Sr2Al2SiO7:Ce^3+, Tb^3+. Scanning Electron Microscopy (SEM) observation indicated that the microstructure of the phosphor consisted of regular fine grains with an average size of about 0.5-1 μm. Luminescence properties were analyzed by measuring the photoluminescence spectra. The Ce^3+, Tb^3+-codoped Sr2Al2SiO7 phosphors showed four main emission peaks: one at 414 nm for Ce^3+ and three at 482, 543, and 588 nm for Tb^3+. The emission spectra of the samples with different doping concentrations showed that the Tb^3+ emission was dominant because of the persistent energy transfer from Ce^3+. The decay characteristic was better than that prepared by the solid-state process in the comparable condition. The codoped phosphor displayed long persistent white phosphorescence.
文摘In order to confirm the relationship between the luminescence and the ratio of Ce3+/Ce4+ more clearly, a series of YAG:Ce3+ (Yttrium Aluminum Garnet, Y2.94Al5O12:0.06Ce3+) phosphors were pre- pared under different sintering atmosphere. A semi-quantitative analysis based on X-ray photoe-lectron spectroscopy (XPS) was introduced to study the mole ratio of Ce3+/Ce4+ in the as-synthesized YAG:Ce3+ phosphors. The results indicated that the percentage of Ce3+/(Ce3+ + Ce4+) reached 88.46% under the reduction atmosphere. The emission intensity of YAG:Ce3+ phosphors was in-creased significantly with the increasing of Ce3+ concentration.