Generalized Yang-Mills theory has a covariant derivative, which contains both vector and scalar gauge bosons. Based on this theory, we construct a strong interaction model by using the group U(4). By using this U(4...Generalized Yang-Mills theory has a covariant derivative, which contains both vector and scalar gauge bosons. Based on this theory, we construct a strong interaction model by using the group U(4). By using this U(4) generalized Yang-Mills model, we also obtain a gauge potential solution, which can be used to explain the asymptotic behavior and color confinement.展开更多
Generalized Yang-Mills theory has a covariant derivative which contains both vector and pseudoscalargauge bosons.Based on this theory,we construct a U(4) strong interaction model By using this U(4) generalizedYang-Mil...Generalized Yang-Mills theory has a covariant derivative which contains both vector and pseudoscalargauge bosons.Based on this theory,we construct a U(4) strong interaction model By using this U(4) generalizedYang-Mills model,we obtain that mesons can be realized as the colorless pseudoscalar gauge bosons.We also obtain agauge potential solution which can be used to explain the asymptotic behavior and color confinement.展开更多
Generalized Yang-Mills theory has a covariant derivative which contains both vector and scalar gauge bosons. Based on this theory, we construct an SU(3) unified model of electromagnetic and weak interactions to simpli...Generalized Yang-Mills theory has a covariant derivative which contains both vector and scalar gauge bosons. Based on this theory, we construct an SU(3) unified model of electromagnetic and weak interactions to simplify the Weinberg-Salam model. By using the Nambu-Jona-Lasinio mechanism, the symmetry breaking can be realized dynamically. The masses of W<sup>±</sup>, Z<sup>0</sup> are obtained and interactions between various particles are the same as that of the Weinberg-Salam model. At the same time, sin<sup>2</sup> θ<sub>w</sub> =1/4 can be given.展开更多
We present a brief review of the cohomological solutions of self-coupling interactions of the fields in the free Yang-Mills theory. All consistent interactions among the fields have been obtained using the antifield f...We present a brief review of the cohomological solutions of self-coupling interactions of the fields in the free Yang-Mills theory. All consistent interactions among the fields have been obtained using the antifield formalism through several order BRST deformations of the master equation. It is found that the coupling deformations halt exclusively at the second order, whereas higher order deformations are obstructed due to non-local interactions. The results demonstrate the BRST cohomological derivation of the interacting Yang-Mills theory.展开更多
We investigate the classical dynamics of the massive SU(2) Yang-Mills field in the framework of multiple scale perturbation theory. We show analytically that there exists a subset of solutions having the form of a kin...We investigate the classical dynamics of the massive SU(2) Yang-Mills field in the framework of multiple scale perturbation theory. We show analytically that there exists a subset of solutions having the form of a kink soliton, modulated by a plane wave, in a linear subspace transverse to the direction of free propagation. Subsequently, we explore how these solutions affect the dynamics of a Dirac field possessing an SU(2) charge. We find that this class of Yang- Mills configurations, when regarded as an external field, leads to the localization of the fermion along a line in the transverse space. Our analysis reveals a mechanism for trapping SU(2) charged fermions in the presence of an external Yang-Mills field indicating the non-abelian analogue of Landau localization in electrodynamics.展开更多
By decomposing SU(2) gauge potential in four-dimensional Euclidean SU(2) Yang-Mills theory in a new way, we find that the instanton number related to the isospin defects of a doublet order parameter can be topolog...By decomposing SU(2) gauge potential in four-dimensional Euclidean SU(2) Yang-Mills theory in a new way, we find that the instanton number related to the isospin defects of a doublet order parameter can be topologically quantized by the Hopf index and Brouwer degree. It is also shown that the instanton number is just the sum of the topological charges of the isospin defects in the non-trivial sector of Yang-Mills theory.展开更多
We present concrete evidence that Yang-Mills theory exhibits non-unitarity in non-integer spacetime dimensions.This violation of unitarity stems from evanescent operators that,while vanishing in four dimensions,are no...We present concrete evidence that Yang-Mills theory exhibits non-unitarity in non-integer spacetime dimensions.This violation of unitarity stems from evanescent operators that,while vanishing in four dimensions,are non-zero in general d dimensions.We demonstrate that these evanescent operators lead to the emergence of both negative-norm states and complex anomalous dimensions.展开更多
The strong gravitational lensing of a regular and rotating magnetic black hole in non-minimally coupled Einstein-Yang-Mills theory is studied.We find that,with the increase of any characteristic parameters of this bla...The strong gravitational lensing of a regular and rotating magnetic black hole in non-minimally coupled Einstein-Yang-Mills theory is studied.We find that,with the increase of any characteristic parameters of this black hole,such as the rotating parameter a,magnetic charge q and EYM parameterλ,the angular image positionθ∞and relative magnification rm decrease while deflection angleα(θ)and image separation s increase.The results will degenerate to that of the Kerr case,RN case with magnetic charge and Schwarzschild case when we take some specific values for the black hole parameters.The results also show that,due to the small influence of magnetic charge and EYM parameters,it is difficult for current astronomical instruments to tell this black hole apart from a General Relativity one.展开更多
In this study,we compute the correlation functions of Wilson(-'t Hooft)loops with chiral primary operators in the N=4 supersymmetric Yang-Mills theory with SO(N)gauge symmetry,which has a holographic dual descript...In this study,we compute the correlation functions of Wilson(-'t Hooft)loops with chiral primary operators in the N=4 supersymmetric Yang-Mills theory with SO(N)gauge symmetry,which has a holographic dual description of the Type IIB superstring theory on the AdS_(5)×Rp^(5)background.Specifically,we compute the coefficients of the chiral primary operators in the operator product expansion of Wilson loops in the fundamental representation,Wilson-'t Hooft loops in the symmetric representation,Wilson loops in the anti-fundamental representation,and Wilson loops in the spinor representation.We also compare these results to those of the N=4 SU(N)super Yang-Mills theory.展开更多
Recently, much progress has been made toward the Hamiltonian reductions of the two-dimensional WZNW theory. The remarkable point is that such reductions give a unified description of many known and unforeknown two-dim...Recently, much progress has been made toward the Hamiltonian reductions of the two-dimensional WZNW theory. The remarkable point is that such reductions give a unified description of many known and unforeknown two-dimensional integrable field theories, and that while using the WZNW field to parametrize the solutions of these integrable systems, the apparant singularities arising from the improper choices of coordinate systems can be removed.展开更多
In traditional finite-temperature Kohn–Sham density functional theory(KSDFT),the partial occupation of a large number of high-energy KS eigenstates restricts the use of first-principles molecular dynamics methods at ...In traditional finite-temperature Kohn–Sham density functional theory(KSDFT),the partial occupation of a large number of high-energy KS eigenstates restricts the use of first-principles molecular dynamics methods at extremely high temperatures.However,stochastic density functional theory(SDFT)can overcome this limitation.Recently,SDFT and the related mixed stochastic–deterministic density functional theory,based on a plane-wave basis set,have been implemented in the first-principles electronic structure software ABACUS[Q.Liu and M.Chen,Phys.Rev.B 106,125132(2022)].In this study,we combine SDFT with the Born–Oppenheimer molecular dynamics method to investigate systems with temperatures ranging from a few tens of eV to 1000 eV.Importantly,we train machine-learning-based interatomic models using the SDFT data and employ these deep potential models to simulate large-scale systems with long trajectories.Subsequently,we compute and analyze the structural properties,dynamic properties,and transport coefficients of warm dense matter.展开更多
Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties...Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties and environmental resilience. Biological composite structures with helicoidal schemes and designs have remarkable capacities to absorb impact energy and withstand damage. However, there is a dearth of extensive study on the influence of fiber redirection and reorientation inside the matrix of a helicoid structure on its mechanical performance and reactivity. The present study aimed to explore the static and transient responses of a bio-inspired helicoid laminated composite(B-iHLC) shell under the influence of an explosive load using an isomorphic method. The structural integrity of the shell is maintained by a viscoelastic basis known as the Pasternak foundation, which encompasses two coefficients of stiffness and one coefficient of damping. The equilibrium equations governing shell dynamics are obtained by using Hamilton's principle and including the modified first-order shear theory,therefore obviating the need to employ a shear correction factor. The paper's model and approach are validated by doing numerical comparisons with respected publications. The findings of this study may be used in the construction of military and civilian infrastructure in situations when the structure is subjected to severe stresses that might potentially result in catastrophic collapse. The findings of this paper serve as the foundation for several other issues, including geometric optimization and the dynamic response of similar mechanical structures.展开更多
As known, the spontaneous symmetry breaking (SSB) and the Brout-Englert-Higgs Mechanism (BEH-M) solved the Yang-Mills Mass Gap Problem. However, various mathematicians, even prestigious ones, consider the basic assump...As known, the spontaneous symmetry breaking (SSB) and the Brout-Englert-Higgs Mechanism (BEH-M) solved the Yang-Mills Mass Gap Problem. However, various mathematicians, even prestigious ones, consider the basic assumptions of the gauge theories to be wrong, as well as in conflict with the experimental evidence and in clear disagreement with the facts, distorting the physical reality itself. Likewise, these theories are mathematically inconsistent, adopting a mathematical structure somewhat complicated and arbitrary, which does not satisfy the strong demands for coherence. The weakest point of the gauge theories, in our opinion, consists in imposing that all the particles must be free of an intrinsic mass. On the contrary, even for the particle considered universally massless, i.e. the photon, our calculations show a dynamic-mass, a push-momentum (p) of 1.325 × 10<sup>-22</sup> [g⋅cm/s]. With this work we try to provide a possible solution to the Yang-Mills Mass Gap Problem, but without taking into account the SSB, nor using the BEH-M. We try to provide a mathematical explanation for this phenomenon, considering that in the spectrum of the Yang-Mills theory, there is a mass gap, that is, the difference between the energy of the vacuum state and the first excited state is different from zero. In other words, the lightest of the particles predicted by the theory must have a strictly positive mass to explain the short range of strong nuclear forces. It is clear, indeed, that if we replaced this value with the null value of the photon inserted in the equations of the Perturbation Theory, the Quantum Fields Theory and the Yang-Mills theories, all divergences, that is all zeroes and infinities, would suddenly disappear. Consequently, the limits imposed by the SSB disappear so that there is no longer any need to deny the mass to the Nuclear Forces bosons, including the Yang-Mills b quantum.展开更多
We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implemen...We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implementedthe charge self-consistent DFT+DMFT formalism by interfacing a full-potential all-electron DFT code with threehybridization expansion-based continuous-time quantum Monte Carlo impurity solvers.The benchmarks on several 3d,4fand 5f strongly correlated electron systems validated our formalism and implementation.Furthermore,within the LCANOframework,our formalism is general and the code architecture is extensible,so it can work as a bridge merging differentLCNAO DFT packages and impurity solvers to do charge self-consistent DFT+DMFT calculations.展开更多
This paper aims to formalize a general definition of intelligence beyond human intelligence. We accomplish this by re-imagining the concept of equality as a fundamental abstraction for relation. We discover that the c...This paper aims to formalize a general definition of intelligence beyond human intelligence. We accomplish this by re-imagining the concept of equality as a fundamental abstraction for relation. We discover that the concept of equality = limits the sensitivity of our mathematics to abstract relationships. We propose a new relation principle that does not rely on the concept of equality but is consistent with existing mathematical abstractions. In essence, this paper proposes a conceptual framework for general interaction and argues that this framework is also an abstraction that satisfies the definition of Intelligence. Hence, we define intelligence as a formalization of generality, represented by the abstraction ∆∞Ο, where each symbol represents the concepts infinitesimal, infinite, and finite respectively. In essence, this paper proposes a General Language Model (GLM), where the abstraction ∆∞Ο represents the foundational relationship of the model. This relation is colloquially termed “The theory of everything”.展开更多
The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of trea...The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of treatment. How enterprises can make reasonable decisions on their water environment behavior based on the external environment and their own factors is of great significance for scientifically and effectively designing water environment regulation mechanisms. Based on optimal control theory, this study investigates the design of contractual mechanisms for water environmental regulation for small and medium-sized enterprises. The enterprise is regarded as an independent economic entity that can adopt optimal control strategies to maximize its own interests. Based on the participation of multiple subjects including the government, enterprises, and the public, an optimal control strategy model for enterprises under contractual water environmental regulation is constructed using optimal control theory, and a method for calculating the amount of unit pollutant penalties is derived. The water pollutant treatment cost data of a paper company is selected to conduct empirical numerical analysis on the model. The results show that the increase in the probability of government regulation and public participation, as well as the decrease in local government protection for enterprises, can achieve the same regulatory effect while reducing the number of administrative penalties per unit. Finally, the implementation process of contractual water environmental regulation for small and medium-sized enterprises is designed.展开更多
In recent years,network attacks have been characterized by diversification and scale,which indicates a requirement for defense strategies to sacrifice generalizability for higher security.As the latest theoretical ach...In recent years,network attacks have been characterized by diversification and scale,which indicates a requirement for defense strategies to sacrifice generalizability for higher security.As the latest theoretical achievement in active defense,mimic defense demonstrates high robustness against complex attacks.This study proposes a Function-aware,Bayesian adjudication,and Adaptive updating Mimic Defense(FBAMD)theory for addressing the current problems of existing work including limited ability to resist unknown threats,imprecise heterogeneous metrics,and over-reliance on relatively-correct axiom.FBAMD incorporates three critical steps.Firstly,the common features of executors’vulnerabilities are obtained from the perspective of the functional implementation(i.e,input-output relationships extraction).Secondly,a new adjudication mechanism considering Bayes’theory is proposed by leveraging the advantages of both current results and historical confidence.Furthermore,posterior confidence can be updated regularly with prior adjudication information,which provides mimic system adaptability.The experimental analysis shows that FBAMD exhibits the best performance in the face of different types of attacks compared to the state-of-the-art over real-world datasets.This study presents a promising step toward the theo-retical innovation of mimic defense.展开更多
Microfluidic devices are composed of microchannels with a diameter ranging from ten to a few hundred micrometers.Thus,quite a small(10-9–10-18l)amount of liquid can be manipulated by such a precise system.In the past...Microfluidic devices are composed of microchannels with a diameter ranging from ten to a few hundred micrometers.Thus,quite a small(10-9–10-18l)amount of liquid can be manipulated by such a precise system.In the past three decades,significant progress in materials science,microfabrication,and various applications has boosted the development of promising functional microfluidic devices.In this review,the recent progress on novel microfluidic devices with various functions and applications is presented.First,the theory and numerical methods for studying the performance of microfluidic devices are briefly introduced.Then,materials and fabrication methods of functional microfluidic devices are summarized.Next,the recent significant advances in applications of microfluidic devices are highlighted,including heat sinks,clean water production,chemical reactions,sensors,biomedicine,capillaric circuits,wearable electronic devices,and microrobotics.Finally,perspectives on the challenges and future developments of functional microfluidic devices are presented.This review aims to inspire researchers from various fields engineering,materials,chemistry,mathematics,physics,and more—to collaborate and drive forward the development and applications of functional microfluidic devices,specifically for achieving carbon neutrality.展开更多
In real space density functional theory calculations,the effective potential depends on the electron density,requiring self-consistent iterations,and numerous integrals at each step,making the process time-consuming.I...In real space density functional theory calculations,the effective potential depends on the electron density,requiring self-consistent iterations,and numerous integrals at each step,making the process time-consuming.In our research,we propose an optimization method to expedite density functional theory(DFT)calculations for systems with large aspect ratios,such as metallic nanorods,nanowires,or scanning tunneling microscope tips.This method focuses on employing basis set to expand the electron density,Coulomb potential,and exchange-correlation potential.By precomputing integrals and caching redundant results,this expansion streamlines the integration process,significantly accelerating DFT computations.As a case study,we have applied this optimization to metallic nanorod systems of various radii and lengths,obtaining corresponding ground-state electron densities and potentials.展开更多
基金The project supported by the National Natural Science Foundation of China under Grant No. 10647106
文摘Generalized Yang-Mills theory has a covariant derivative, which contains both vector and scalar gauge bosons. Based on this theory, we construct a strong interaction model by using the group U(4). By using this U(4) generalized Yang-Mills model, we also obtain a gauge potential solution, which can be used to explain the asymptotic behavior and color confinement.
基金National Natural Science Foundation of China under Grant No.10647106
文摘Generalized Yang-Mills theory has a covariant derivative which contains both vector and pseudoscalargauge bosons.Based on this theory,we construct a U(4) strong interaction model By using this U(4) generalizedYang-Mills model,we obtain that mesons can be realized as the colorless pseudoscalar gauge bosons.We also obtain agauge potential solution which can be used to explain the asymptotic behavior and color confinement.
文摘Generalized Yang-Mills theory has a covariant derivative which contains both vector and scalar gauge bosons. Based on this theory, we construct an SU(3) unified model of electromagnetic and weak interactions to simplify the Weinberg-Salam model. By using the Nambu-Jona-Lasinio mechanism, the symmetry breaking can be realized dynamically. The masses of W<sup>±</sup>, Z<sup>0</sup> are obtained and interactions between various particles are the same as that of the Weinberg-Salam model. At the same time, sin<sup>2</sup> θ<sub>w</sub> =1/4 can be given.
文摘We present a brief review of the cohomological solutions of self-coupling interactions of the fields in the free Yang-Mills theory. All consistent interactions among the fields have been obtained using the antifield formalism through several order BRST deformations of the master equation. It is found that the coupling deformations halt exclusively at the second order, whereas higher order deformations are obstructed due to non-local interactions. The results demonstrate the BRST cohomological derivation of the interacting Yang-Mills theory.
文摘We investigate the classical dynamics of the massive SU(2) Yang-Mills field in the framework of multiple scale perturbation theory. We show analytically that there exists a subset of solutions having the form of a kink soliton, modulated by a plane wave, in a linear subspace transverse to the direction of free propagation. Subsequently, we explore how these solutions affect the dynamics of a Dirac field possessing an SU(2) charge. We find that this class of Yang- Mills configurations, when regarded as an external field, leads to the localization of the fermion along a line in the transverse space. Our analysis reveals a mechanism for trapping SU(2) charged fermions in the presence of an external Yang-Mills field indicating the non-abelian analogue of Landau localization in electrodynamics.
文摘By decomposing SU(2) gauge potential in four-dimensional Euclidean SU(2) Yang-Mills theory in a new way, we find that the instanton number related to the isospin defects of a doublet order parameter can be topologically quantized by the Hopf index and Brouwer degree. It is also shown that the instanton number is just the sum of the topological charges of the isospin defects in the non-trivial sector of Yang-Mills theory.
基金supported by the National Natural Science Foundation of China(Grant Nos.12175291,11935013,and 12047503)the Chinese Academy of Siences(Grant No.YSBR-101)the support of the HPC Cluster of the Institute of Theoretical Physics,Chinese Academy of Sciences(ITP-CAS)。
文摘We present concrete evidence that Yang-Mills theory exhibits non-unitarity in non-integer spacetime dimensions.This violation of unitarity stems from evanescent operators that,while vanishing in four dimensions,are non-zero in general d dimensions.We demonstrate that these evanescent operators lead to the emergence of both negative-norm states and complex anomalous dimensions.
基金the National Natural Science Foundation of China(11865018)the Natural Science Foundation of Henan Province,China(232300421351)the Talent Introduction Fund at Henan University of Technology,China(2018BS042,2020BS035)。
文摘The strong gravitational lensing of a regular and rotating magnetic black hole in non-minimally coupled Einstein-Yang-Mills theory is studied.We find that,with the increase of any characteristic parameters of this black hole,such as the rotating parameter a,magnetic charge q and EYM parameterλ,the angular image positionθ∞and relative magnification rm decrease while deflection angleα(θ)and image separation s increase.The results will degenerate to that of the Kerr case,RN case with magnetic charge and Schwarzschild case when we take some specific values for the black hole parameters.The results also show that,due to the small influence of magnetic charge and EYM parameters,it is difficult for current astronomical instruments to tell this black hole apart from a General Relativity one.
基金Supported in part by the National Natural Science Foundation of China(11975164,11935009)Natural Science Foundation of Tianjin(20JCYBJC00910,20JCQNJC02030)。
文摘In this study,we compute the correlation functions of Wilson(-'t Hooft)loops with chiral primary operators in the N=4 supersymmetric Yang-Mills theory with SO(N)gauge symmetry,which has a holographic dual description of the Type IIB superstring theory on the AdS_(5)×Rp^(5)background.Specifically,we compute the coefficients of the chiral primary operators in the operator product expansion of Wilson loops in the fundamental representation,Wilson-'t Hooft loops in the symmetric representation,Wilson loops in the anti-fundamental representation,and Wilson loops in the spinor representation.We also compare these results to those of the N=4 SU(N)super Yang-Mills theory.
文摘Recently, much progress has been made toward the Hamiltonian reductions of the two-dimensional WZNW theory. The remarkable point is that such reductions give a unified description of many known and unforeknown two-dimensional integrable field theories, and that while using the WZNW field to parametrize the solutions of these integrable systems, the apparant singularities arising from the improper choices of coordinate systems can be removed.
基金supported by the National Natural Science Foundation of China under Grant Nos.12122401 and 12074007.
文摘In traditional finite-temperature Kohn–Sham density functional theory(KSDFT),the partial occupation of a large number of high-energy KS eigenstates restricts the use of first-principles molecular dynamics methods at extremely high temperatures.However,stochastic density functional theory(SDFT)can overcome this limitation.Recently,SDFT and the related mixed stochastic–deterministic density functional theory,based on a plane-wave basis set,have been implemented in the first-principles electronic structure software ABACUS[Q.Liu and M.Chen,Phys.Rev.B 106,125132(2022)].In this study,we combine SDFT with the Born–Oppenheimer molecular dynamics method to investigate systems with temperatures ranging from a few tens of eV to 1000 eV.Importantly,we train machine-learning-based interatomic models using the SDFT data and employ these deep potential models to simulate large-scale systems with long trajectories.Subsequently,we compute and analyze the structural properties,dynamic properties,and transport coefficients of warm dense matter.
文摘Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties and environmental resilience. Biological composite structures with helicoidal schemes and designs have remarkable capacities to absorb impact energy and withstand damage. However, there is a dearth of extensive study on the influence of fiber redirection and reorientation inside the matrix of a helicoid structure on its mechanical performance and reactivity. The present study aimed to explore the static and transient responses of a bio-inspired helicoid laminated composite(B-iHLC) shell under the influence of an explosive load using an isomorphic method. The structural integrity of the shell is maintained by a viscoelastic basis known as the Pasternak foundation, which encompasses two coefficients of stiffness and one coefficient of damping. The equilibrium equations governing shell dynamics are obtained by using Hamilton's principle and including the modified first-order shear theory,therefore obviating the need to employ a shear correction factor. The paper's model and approach are validated by doing numerical comparisons with respected publications. The findings of this study may be used in the construction of military and civilian infrastructure in situations when the structure is subjected to severe stresses that might potentially result in catastrophic collapse. The findings of this paper serve as the foundation for several other issues, including geometric optimization and the dynamic response of similar mechanical structures.
文摘As known, the spontaneous symmetry breaking (SSB) and the Brout-Englert-Higgs Mechanism (BEH-M) solved the Yang-Mills Mass Gap Problem. However, various mathematicians, even prestigious ones, consider the basic assumptions of the gauge theories to be wrong, as well as in conflict with the experimental evidence and in clear disagreement with the facts, distorting the physical reality itself. Likewise, these theories are mathematically inconsistent, adopting a mathematical structure somewhat complicated and arbitrary, which does not satisfy the strong demands for coherence. The weakest point of the gauge theories, in our opinion, consists in imposing that all the particles must be free of an intrinsic mass. On the contrary, even for the particle considered universally massless, i.e. the photon, our calculations show a dynamic-mass, a push-momentum (p) of 1.325 × 10<sup>-22</sup> [g⋅cm/s]. With this work we try to provide a possible solution to the Yang-Mills Mass Gap Problem, but without taking into account the SSB, nor using the BEH-M. We try to provide a mathematical explanation for this phenomenon, considering that in the spectrum of the Yang-Mills theory, there is a mass gap, that is, the difference between the energy of the vacuum state and the first excited state is different from zero. In other words, the lightest of the particles predicted by the theory must have a strictly positive mass to explain the short range of strong nuclear forces. It is clear, indeed, that if we replaced this value with the null value of the photon inserted in the equations of the Perturbation Theory, the Quantum Fields Theory and the Yang-Mills theories, all divergences, that is all zeroes and infinities, would suddenly disappear. Consequently, the limits imposed by the SSB disappear so that there is no longer any need to deny the mass to the Nuclear Forces bosons, including the Yang-Mills b quantum.
文摘We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implementedthe charge self-consistent DFT+DMFT formalism by interfacing a full-potential all-electron DFT code with threehybridization expansion-based continuous-time quantum Monte Carlo impurity solvers.The benchmarks on several 3d,4fand 5f strongly correlated electron systems validated our formalism and implementation.Furthermore,within the LCANOframework,our formalism is general and the code architecture is extensible,so it can work as a bridge merging differentLCNAO DFT packages and impurity solvers to do charge self-consistent DFT+DMFT calculations.
文摘This paper aims to formalize a general definition of intelligence beyond human intelligence. We accomplish this by re-imagining the concept of equality as a fundamental abstraction for relation. We discover that the concept of equality = limits the sensitivity of our mathematics to abstract relationships. We propose a new relation principle that does not rely on the concept of equality but is consistent with existing mathematical abstractions. In essence, this paper proposes a conceptual framework for general interaction and argues that this framework is also an abstraction that satisfies the definition of Intelligence. Hence, we define intelligence as a formalization of generality, represented by the abstraction ∆∞Ο, where each symbol represents the concepts infinitesimal, infinite, and finite respectively. In essence, this paper proposes a General Language Model (GLM), where the abstraction ∆∞Ο represents the foundational relationship of the model. This relation is colloquially termed “The theory of everything”.
文摘The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of treatment. How enterprises can make reasonable decisions on their water environment behavior based on the external environment and their own factors is of great significance for scientifically and effectively designing water environment regulation mechanisms. Based on optimal control theory, this study investigates the design of contractual mechanisms for water environmental regulation for small and medium-sized enterprises. The enterprise is regarded as an independent economic entity that can adopt optimal control strategies to maximize its own interests. Based on the participation of multiple subjects including the government, enterprises, and the public, an optimal control strategy model for enterprises under contractual water environmental regulation is constructed using optimal control theory, and a method for calculating the amount of unit pollutant penalties is derived. The water pollutant treatment cost data of a paper company is selected to conduct empirical numerical analysis on the model. The results show that the increase in the probability of government regulation and public participation, as well as the decrease in local government protection for enterprises, can achieve the same regulatory effect while reducing the number of administrative penalties per unit. Finally, the implementation process of contractual water environmental regulation for small and medium-sized enterprises is designed.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFB1804604).
文摘In recent years,network attacks have been characterized by diversification and scale,which indicates a requirement for defense strategies to sacrifice generalizability for higher security.As the latest theoretical achievement in active defense,mimic defense demonstrates high robustness against complex attacks.This study proposes a Function-aware,Bayesian adjudication,and Adaptive updating Mimic Defense(FBAMD)theory for addressing the current problems of existing work including limited ability to resist unknown threats,imprecise heterogeneous metrics,and over-reliance on relatively-correct axiom.FBAMD incorporates three critical steps.Firstly,the common features of executors’vulnerabilities are obtained from the perspective of the functional implementation(i.e,input-output relationships extraction).Secondly,a new adjudication mechanism considering Bayes’theory is proposed by leveraging the advantages of both current results and historical confidence.Furthermore,posterior confidence can be updated regularly with prior adjudication information,which provides mimic system adaptability.The experimental analysis shows that FBAMD exhibits the best performance in the face of different types of attacks compared to the state-of-the-art over real-world datasets.This study presents a promising step toward the theo-retical innovation of mimic defense.
基金supported by the National Natural Science Foundation of China(52006056)the Key-Area Research and Development Program of Guangdong Province(2020B090923003)The project was also partly supported by Natural Research Institute for Family Planning as well。
文摘Microfluidic devices are composed of microchannels with a diameter ranging from ten to a few hundred micrometers.Thus,quite a small(10-9–10-18l)amount of liquid can be manipulated by such a precise system.In the past three decades,significant progress in materials science,microfabrication,and various applications has boosted the development of promising functional microfluidic devices.In this review,the recent progress on novel microfluidic devices with various functions and applications is presented.First,the theory and numerical methods for studying the performance of microfluidic devices are briefly introduced.Then,materials and fabrication methods of functional microfluidic devices are summarized.Next,the recent significant advances in applications of microfluidic devices are highlighted,including heat sinks,clean water production,chemical reactions,sensors,biomedicine,capillaric circuits,wearable electronic devices,and microrobotics.Finally,perspectives on the challenges and future developments of functional microfluidic devices are presented.This review aims to inspire researchers from various fields engineering,materials,chemistry,mathematics,physics,and more—to collaborate and drive forward the development and applications of functional microfluidic devices,specifically for achieving carbon neutrality.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFA0211303)the National Natural Science Foundation of China(Grant No.91850207)the numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of Wuhan University.
文摘In real space density functional theory calculations,the effective potential depends on the electron density,requiring self-consistent iterations,and numerous integrals at each step,making the process time-consuming.In our research,we propose an optimization method to expedite density functional theory(DFT)calculations for systems with large aspect ratios,such as metallic nanorods,nanowires,or scanning tunneling microscope tips.This method focuses on employing basis set to expand the electron density,Coulomb potential,and exchange-correlation potential.By precomputing integrals and caching redundant results,this expansion streamlines the integration process,significantly accelerating DFT computations.As a case study,we have applied this optimization to metallic nanorod systems of various radii and lengths,obtaining corresponding ground-state electron densities and potentials.