YBa2Cu3O7-x (YBCO) superconducting film was fabricated on {001} LaAlO3 (LAO) substrate by pulse laser deposition (PLD), and its microstructure was examined by high resolution X-ray diffraction technology (HRXRD...YBa2Cu3O7-x (YBCO) superconducting film was fabricated on {001} LaAlO3 (LAO) substrate by pulse laser deposition (PLD), and its microstructure was examined by high resolution X-ray diffraction technology (HRXRD), such as pole figure, rocking curve, reciprocal space mapping. The results show that the YBCO crystalline alignment is almost {001}YBCO//{001}LAO, 100YBCO//100LAO besides 2% {001}YBCO//{001}LAO, 110YBCO//100LAO. The out-plane alignment of YBCO is some spreading (the breadth is 0.75°). There are 90°±0.65°110 twin domains in the film, which is caused by the high local stress and stress difference between 100 and 010 during the tetragonal to orthorhombic phase transition.展开更多
The morphology and the formation of Y2BaCuO5 phase in powder melting processed YBa2Cu3O7-x superconductors were investigated. The experimental results show the heat treatment can not change the shape of Y2BaCuO5 parti...The morphology and the formation of Y2BaCuO5 phase in powder melting processed YBa2Cu3O7-x superconductors were investigated. The experimental results show the heat treatment can not change the shape of Y2BaCuO5 particles in powder melting processed samples. The formation of round Y2BaCuO5 phase is due to relative content of each constitution of precursor powders in powder melting process. For powder melting process, the excessive liquid phase is eliminated, which restrains the preferred growth of Y2BaCuO5 particles.展开更多
YBa2Cu3O7-x(YBCO) films with co-doping BaTiO3(BTO) and Y2O3 nanostructures were prepared by metal organic deposition using trifluoroacetates(TFA-MOD). The properties of the BTO/Y2O3co-doped YBCO films with diffe...YBa2Cu3O7-x(YBCO) films with co-doping BaTiO3(BTO) and Y2O3 nanostructures were prepared by metal organic deposition using trifluoroacetates(TFA-MOD). The properties of the BTO/Y2O3co-doped YBCO films with different excess yttrium have been systematically studied by x-ray diffraction(XRD), Raman spectra, and scanning electron microscope(SEM). The optimized content of yttrium excess in the BTO/Y2O3co-doped YBCO films is 10 mol.%, and the critical current density is as high as - 17 mA/cm^2(self-field, 65 K) by the magnetic signal. In addition, the Y2Cu2O5 was formed when the content of yttrium excess increases to 24 mol.%, which may result in the deterioration of the superconducting properties and the microstructure. The unique combination of the different types of nanostructures of BTO and Y2O3 in the doped YBCO films, compared with the pure YBCO films and BTO doped YBCO films, enhances the critical current density(JC) not only at the self-magnetic field, but also in the applied magnetic field.展开更多
基金Project (50972019) supported by the National Natural Science Foundation of ChinaProject (2011CBA00105) supported by the National Basic Research Program of China
文摘YBa2Cu3O7-x (YBCO) superconducting film was fabricated on {001} LaAlO3 (LAO) substrate by pulse laser deposition (PLD), and its microstructure was examined by high resolution X-ray diffraction technology (HRXRD), such as pole figure, rocking curve, reciprocal space mapping. The results show that the YBCO crystalline alignment is almost {001}YBCO//{001}LAO, 100YBCO//100LAO besides 2% {001}YBCO//{001}LAO, 110YBCO//100LAO. The out-plane alignment of YBCO is some spreading (the breadth is 0.75°). There are 90°±0.65°110 twin domains in the film, which is caused by the high local stress and stress difference between 100 and 010 during the tetragonal to orthorhombic phase transition.
基金Funded by the National Natural Science Foundation of China (50432050)the National High Technology Research and Development Program of China(2007AA03Z241)
文摘The morphology and the formation of Y2BaCuO5 phase in powder melting processed YBa2Cu3O7-x superconductors were investigated. The experimental results show the heat treatment can not change the shape of Y2BaCuO5 particles in powder melting processed samples. The formation of round Y2BaCuO5 phase is due to relative content of each constitution of precursor powders in powder melting process. For powder melting process, the excessive liquid phase is eliminated, which restrains the preferred growth of Y2BaCuO5 particles.
基金Project supported by the National Natural Science Foundation of China(Grant No.51272250)the National Basic Research Program of China(Grant No.2011CBA00105)+1 种基金the National High Technology Research and Development Program of China(Grant No.2014AA032702)the Natural Science Foundation of Beijing,China(Grant No.2152035)
文摘YBa2Cu3O7-x(YBCO) films with co-doping BaTiO3(BTO) and Y2O3 nanostructures were prepared by metal organic deposition using trifluoroacetates(TFA-MOD). The properties of the BTO/Y2O3co-doped YBCO films with different excess yttrium have been systematically studied by x-ray diffraction(XRD), Raman spectra, and scanning electron microscope(SEM). The optimized content of yttrium excess in the BTO/Y2O3co-doped YBCO films is 10 mol.%, and the critical current density is as high as - 17 mA/cm^2(self-field, 65 K) by the magnetic signal. In addition, the Y2Cu2O5 was formed when the content of yttrium excess increases to 24 mol.%, which may result in the deterioration of the superconducting properties and the microstructure. The unique combination of the different types of nanostructures of BTO and Y2O3 in the doped YBCO films, compared with the pure YBCO films and BTO doped YBCO films, enhances the critical current density(JC) not only at the self-magnetic field, but also in the applied magnetic field.