Atomistic simulation has been performed to investigate the dynamical and defect properties of multiferroic hexagonal YMnO3 with newly developed interaction potentials. Dynamical calculation reveals that phonon vibrati...Atomistic simulation has been performed to investigate the dynamical and defect properties of multiferroic hexagonal YMnO3 with newly developed interaction potentials. Dynamical calculation reveals that phonon vibrations of hexagonal YMnO3 are quite different from those of orthorhombic YMnO3. Defect calculation finds that O Frenkel is the most probable intrinsic disorder, and Mn antisite defect is favorable to exist, especially for Mn ions entering the Y2 sites. It is also found that holes prefer to localize at O2sites rather than at Mn3+ sites, while the electron can be localized at the Mn3+ site. The disproportionation of Mn3+ ions is unlikely to occur in hexagonal YMnO3.展开更多
Large crystal growth of Cr-doped h-YMnO3has been investigated by using a high pressure optical floatingzone method. The size of the grown crystals is typically 60–70 mm in length and 4–5 mm in diameter. The structur...Large crystal growth of Cr-doped h-YMnO3has been investigated by using a high pressure optical floatingzone method. The size of the grown crystals is typically 60–70 mm in length and 4–5 mm in diameter. The structure of the grown crystals is analyzed by powder X-ray diffraction and scanning electron microscopy.The defects in the as-grown crystals, including low-angle grain boundary and inclusions are studied. An off-stoichiometric phenomenon is found with a slight Cr deficiency in different parts. The relationship between defects and growth conditions during crystal growth is also discussed. The magnetic properties show spin-glass phase features with weak ferromagnetic behavior below 30 K.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. U0734001 and 50772054)the Ministry of Science and Technology of China (Grant No. 2009CB929202)
文摘Atomistic simulation has been performed to investigate the dynamical and defect properties of multiferroic hexagonal YMnO3 with newly developed interaction potentials. Dynamical calculation reveals that phonon vibrations of hexagonal YMnO3 are quite different from those of orthorhombic YMnO3. Defect calculation finds that O Frenkel is the most probable intrinsic disorder, and Mn antisite defect is favorable to exist, especially for Mn ions entering the Y2 sites. It is also found that holes prefer to localize at O2sites rather than at Mn3+ sites, while the electron can be localized at the Mn3+ site. The disproportionation of Mn3+ ions is unlikely to occur in hexagonal YMnO3.
基金financial support of the National Natural Science Foundation of China (Nos. 51471135 and 51301133)the National Key Research and Development Program (No. 2016YFB1100101)Shaanxi International Cooperation Program
文摘Large crystal growth of Cr-doped h-YMnO3has been investigated by using a high pressure optical floatingzone method. The size of the grown crystals is typically 60–70 mm in length and 4–5 mm in diameter. The structure of the grown crystals is analyzed by powder X-ray diffraction and scanning electron microscopy.The defects in the as-grown crystals, including low-angle grain boundary and inclusions are studied. An off-stoichiometric phenomenon is found with a slight Cr deficiency in different parts. The relationship between defects and growth conditions during crystal growth is also discussed. The magnetic properties show spin-glass phase features with weak ferromagnetic behavior below 30 K.