针对船舶图像目标检测中存在的小目标检测准确率低、系统鲁棒性差的问题,提出一种改进的YOLO v2算法对船舶图像目标进行检测。通过目标框维度聚类、网络结构改进、输入图像多尺度变换等方法对传统YOLO v2算法进行改进,使其能够更好地适...针对船舶图像目标检测中存在的小目标检测准确率低、系统鲁棒性差的问题,提出一种改进的YOLO v2算法对船舶图像目标进行检测。通过目标框维度聚类、网络结构改进、输入图像多尺度变换等方法对传统YOLO v2算法进行改进,使其能够更好地适应船舶目标检测任务。测试结果表明,在输入图像尺寸为416×416时,该算法的平均精确率(mean Average Precision,mAP)达到79.1%,检测速度为64帧/s(Frames Per Second,FPS)。所提方法可满足实时检测的需要,且具有小目标检测精度高、鲁棒性强的特点。展开更多
城市道路普遍存在机动车、非机动车、行人的人车混行路段,车辆目标的准确识别与统计成为视频方法检测混合交通流量的关键问题。本文提出了基于深度学习YOLO(You Only Look Once)的车流量检测算法。用YOLO v2检测道路上移动的目标,对检...城市道路普遍存在机动车、非机动车、行人的人车混行路段,车辆目标的准确识别与统计成为视频方法检测混合交通流量的关键问题。本文提出了基于深度学习YOLO(You Only Look Once)的车流量检测算法。用YOLO v2检测道路上移动的目标,对检出目标中的车辆目标进行识别与筛选,设置感兴趣区域,在车辆目标经过感兴趣区域时计数,并用核相关滤波器跟踪车辆,避免车辆重复计数;在ARM上利用该算法实现了混合交通视频中的车流量检测。测试结果表明,该方法中车辆的检测、跟踪、计数结果良好,可应用于混合交通中的车流量检测。展开更多
文摘针对船舶图像目标检测中存在的小目标检测准确率低、系统鲁棒性差的问题,提出一种改进的YOLO v2算法对船舶图像目标进行检测。通过目标框维度聚类、网络结构改进、输入图像多尺度变换等方法对传统YOLO v2算法进行改进,使其能够更好地适应船舶目标检测任务。测试结果表明,在输入图像尺寸为416×416时,该算法的平均精确率(mean Average Precision,mAP)达到79.1%,检测速度为64帧/s(Frames Per Second,FPS)。所提方法可满足实时检测的需要,且具有小目标检测精度高、鲁棒性强的特点。
文摘城市道路普遍存在机动车、非机动车、行人的人车混行路段,车辆目标的准确识别与统计成为视频方法检测混合交通流量的关键问题。本文提出了基于深度学习YOLO(You Only Look Once)的车流量检测算法。用YOLO v2检测道路上移动的目标,对检出目标中的车辆目标进行识别与筛选,设置感兴趣区域,在车辆目标经过感兴趣区域时计数,并用核相关滤波器跟踪车辆,避免车辆重复计数;在ARM上利用该算法实现了混合交通视频中的车流量检测。测试结果表明,该方法中车辆的检测、跟踪、计数结果良好,可应用于混合交通中的车流量检测。