期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
改进YOLO v4模型在版纳微型猪只行为识别中的研究
1
作者 杨宏宇 陈立畅 +1 位作者 谢小龙 张佳进 《黑龙江畜牧兽医》 CAS 北大核心 2024年第19期46-54,118,119,共11页
为了能够在猪只重叠、遮挡等复杂场景中实现版纳微型猪只行为的准确、高效识别,试验通过改进YOLO v4模型的方法来识别猪只行为,通过视频捕获的方式截取不同角度猪只行为图片,构建行为特征数据集;采用嵌入CBAM注意力机制的Res Net50残差... 为了能够在猪只重叠、遮挡等复杂场景中实现版纳微型猪只行为的准确、高效识别,试验通过改进YOLO v4模型的方法来识别猪只行为,通过视频捕获的方式截取不同角度猪只行为图片,构建行为特征数据集;采用嵌入CBAM注意力机制的Res Net50残差网络结构作为改进YOLO v4模型的主干网络,并引入由深度可分离卷积、批标准化(BN)、Hard Swish激活函数组成的CH模块,代替主干网络中的传统卷积,提升模型检测精度的同时降低参数量;在PANet多尺度特征融合结构中引入双重3层1×1和3×3交替卷积运算替代上、下原采样方式,构成DPANet网络结构,增强对猪只行为图片中细节特征的提取,提高计算效率;基于参数共享理念与二阶段训练的迁移学习方法,优化训练过程以显著缩短训练时间,加速模型的收敛速度。结果表明:改进YOLO v4模型对猪只行为数据集的训练时间仅为6 h,而原模型训练时间则需要19 h;改进YOLO v4模型识别平均精度为93.97%,召回率为96.27%、参数量为0.26×10^(8),与Faster-RCNN、SSD、YOLO v4模型相比,平均精度与召回率分别提升8.88,15.36,8.68个百分点及16.09,41.34,30.40个百分点,参数量最大减少1.11×10^(8)。改进YOLO v4模型对识别爬栏探究、站立行走、进食、躺卧4种行为的准确率达到了98%、88%、92%、97%,与其他3种模型相比,站立行走、进食两种行为的识别效果远大于其他模型。说明改进YOLO v4模型在复杂场景下具有良好的准确性和有效性,能够精准识别猪只的不同行为。 展开更多
关键词 卷积神经网络 图像识别 多目标检测 yolo v4模型 版纳微型猪
下载PDF
基于改进的Yolo v4绝缘子目标识别算法研究 被引量:3
2
作者 许爱华 陈佳韵 +1 位作者 张明文 刘浏 《吉林大学学报(信息科学版)》 CAS 2023年第3期545-551,共7页
针对传统卷积神经网络模块体积庞大、运算量高,在体积较小、资源有限的嵌入式平台上运行效果不好,以及现有轻量化模块无法满足测量速度和测试精确度要求的问题,为此选择目前的主流目标识别算法Yolo v4进行模型轻量化,在Yolo v4模型中引... 针对传统卷积神经网络模块体积庞大、运算量高,在体积较小、资源有限的嵌入式平台上运行效果不好,以及现有轻量化模块无法满足测量速度和测试精确度要求的问题,为此选择目前的主流目标识别算法Yolo v4进行模型轻量化,在Yolo v4模型中引入Mobilenet网络和深度可分离模块进行研究。研究结果表明,改进后不同Mobilenet网络的Yolo v4模型检测一张图片的用时均比原始Yolo v4模型减少19 ms以上,准确率都高于92%。其中以Mobilenet v3为主干特征提取网络的改进Yolo v4模型的准确率为95.12%,与原始Yolo v4模型准确率相比提高2.99%,但该模型的参数量约为Yolo v4模型的1/6,模型处理一张巡检图片用时比原Yolo v4模型减少20 ms。绝缘子作为输电线路的重要组成部分,在众多图像中更快地识别出绝缘子能为之后分析输电线路的运行情况提供帮助。 展开更多
关键词 绝缘子 yolo v4模型 深度可分离卷积块 Mobilenet网络
下载PDF
基于Des-YOLO v4的复杂环境下苹果检测方法 被引量:3
3
作者 张境锋 陈伟 +1 位作者 魏庆宇 郭碧宇 《农机化研究》 北大核心 2023年第5期20-25,共6页
为使采摘机器人快速准确检测出复杂环境中的苹果,提出一种Des-YOLO v4算法与苹果检测方法。由于YOLO v4的网络结构复杂,提出一种Des-YOLO结构,可减少网络参数并提高算法的检测速度;在训练阶段,正负样本的不平衡会导致苹果误检,提出一种... 为使采摘机器人快速准确检测出复杂环境中的苹果,提出一种Des-YOLO v4算法与苹果检测方法。由于YOLO v4的网络结构复杂,提出一种Des-YOLO结构,可减少网络参数并提高算法的检测速度;在训练阶段,正负样本的不平衡会导致苹果误检,提出一种基于AP-Loss的类别损失函数,以提高苹果识别的准确性。通过自制的苹果数据集测试了Des-YOLO v4算法,并在苹果采摘机器人样机上完成了采摘实验。实验结果表明:Des-YOLO v4算法对苹果图像的平均精度值为93.1%,检测速度为53f/s;机器人单次采摘时间为8.7s,采摘成功率达92.9%,具有检测精度高、速度快等优点。 展开更多
关键词 采摘机器人 目标检测 yolo v4 密集连接网络 损失函数
下载PDF
基于YOLO v4卷积神经网络的农田苗草识别研究 被引量:20
4
作者 权龙哲 夏福霖 +4 位作者 姜伟 李海龙 李恒达 娄朝霞 李传文 《东北农业大学学报》 CAS CSCD 北大核心 2021年第7期89-98,共10页
农田杂草是影响农作物生长的主要因素之一,农田杂草的有效防治与农作物产量息息相关。复杂田间环境下,精准识别玉米秧苗与农田杂草能够指导除草装备作业更加经济和高效。为提高农田目标识别精度和效率,文章基于深度学习技术的目标检测方... 农田杂草是影响农作物生长的主要因素之一,农田杂草的有效防治与农作物产量息息相关。复杂田间环境下,精准识别玉米秧苗与农田杂草能够指导除草装备作业更加经济和高效。为提高农田目标识别精度和效率,文章基于深度学习技术的目标检测方法,首先使用多苗期、多时段和单一拍摄角度的图像采集方式并配合数据增强方法制作一个特征丰富的数据集。通过减少YOLOv4网络的输出张量为13×13和52×52两个尺度匹配玉米苗和杂草,并用制作数据集作网络训练。训练结果表明,改进后YOLOv4网络训练得到的检测模型在综合性能上优于YOLO v3、原本YOLO v4和主干网络为VGG19的Faster R-CNN;其F_(1)值为0.828,较修改前提升0.031,检测时间缩短0.014s。此外,根据试验可知数据量和数据增强方式均对模型产生不同程度影响;不同类别的目标进行单一训练比多类别目标组合训练得到检测效果更好。 展开更多
关键词 玉米苗 杂草 目标检测 深度学习 yolo v4网络
下载PDF
基于改进YOLO-V4网络的浅海生物检测模型 被引量:8
5
作者 毛国君 翁伟栋 +3 位作者 朱晋德 张媛 吴富村 毛玉泽 《农业工程学报》 EI CAS CSCD 北大核心 2021年第12期152-158,共7页
海洋生物智能检测是海洋牧场战略的一部分,而利用水下机器人在复杂的海洋环境中快速、准确地检测海洋生物是关键问题。由于海底环境复杂、亮度分布不均匀、海洋生物与其生存环境的区分性差、生物被遮蔽或半隐蔽等原因,准确识别海洋生物... 海洋生物智能检测是海洋牧场战略的一部分,而利用水下机器人在复杂的海洋环境中快速、准确地检测海洋生物是关键问题。由于海底环境复杂、亮度分布不均匀、海洋生物与其生存环境的区分性差、生物被遮蔽或半隐蔽等原因,准确识别海洋生物是一个巨大的挑战。随着卷积神经网络的发展,基于深度学习的目标检测算法成为主流,出现了如EfficientDet、RetinaNet和YOLO-V4等典型算法。这些基于深度学习的算法都不是完全尽善尽美的,不能完全满足海洋生物识别的需求。在探测精度、运算速度、密集目标探测效果等方面都有提高的空间。该研究建立了一个海洋生物数据集,采集了原始图片1810张,数据增强后得到7240张图片,它们被分成训练集(80%)和测试集(20%)。其次,通过引入跨阶段局部网络的概念,构建了嵌连接EC(Embedded Connection)部件,并将其嵌入到YOLO-V4网络的末端,得到改进的YOLO-V4网络。最后,该研究提出了基于改进YOLO-V4网络的海洋生物检测模型MOD(Marine Organism Detection)。试验结果表明,MOD模型的mAP50、mAP75(交并比阈值为0.5、0.75的精度均值)分别为0.969和0.734,计算量为35.328BFLOPs(十亿浮点运算数),检测帧速为139 ms(具有图形加速器GeForce GTX1650上)。与原始YOLO-V4模型相比,MOD模型的mAP50和mAP75提高了0.9和4.8个百分点,而计算量仅提高0.2%。此外,对比两种模型的准确率-召回率曲线,MOD模型的精确度与召回率的平衡点更接近(1,1),因此MOD模型能学习精度和效率的平衡性更好。该研究直接面向浅海生物的目标检测问题,所提供的方法可以为水下机器人精准执行智能捕捞等任务提供有益参考。 展开更多
关键词 模型 深度学习 目标检测 yolo-v4 跨阶段局部网络 嵌连接
下载PDF
基于超分辨率模型与YOLO-V4的织物疵点检测 被引量:1
6
作者 王峰 胥光申 +1 位作者 黄乾玮 余海洋 《轻工机械》 CAS 2022年第5期60-66,共7页
针对工业条件限制下采集的印花布数据集图像分辨率低、检测效果差等问题,课题组提出基于超分辨率模型SRGAN与YOLO-V4网络的织物疵点检测方法,并对SRGAN算法进行改进。课题组首先使用改进的SRGAN算法对原数据集进行超分辨率重构,提高图... 针对工业条件限制下采集的印花布数据集图像分辨率低、检测效果差等问题,课题组提出基于超分辨率模型SRGAN与YOLO-V4网络的织物疵点检测方法,并对SRGAN算法进行改进。课题组首先使用改进的SRGAN算法对原数据集进行超分辨率重构,提高图像分辨率;然后将重构图翻转变化与原图共同作为数据集输入YOLO-V4进行网络训练;最后通过YOLO-V4网络检测印花布表面疵点。实验结果表明:该方法可提高低分辨率织物图疵点检测效果,准确率高达90.29%,比超分辨率重构前提升了13.19%,能实现实时定位疵点的准确位置并输出疵点类别。 展开更多
关键词 织物疵点 超分辨率重构 改进SRGAN算法 数据扩充 yolo-v4网络
下载PDF
YOLO v4框架下Multi⁃Patch多帧增量式交通视频目标检测
7
作者 文奴 郭仁忠 +1 位作者 贺彪 万远 《测绘通报》 CSCD 北大核心 2022年第5期38-44,共7页
提升目标检测模型的泛化能力是计算机视觉领域的研究热点和关键难点。本文提出了一种Multi⁃Patch方法和多帧增量式预测策略,提升了不同场景下交通视频目标检测的稳健性,有效解决了目标尺度多变导致的视频中目标召回率低的问题。根据视... 提升目标检测模型的泛化能力是计算机视觉领域的研究热点和关键难点。本文提出了一种Multi⁃Patch方法和多帧增量式预测策略,提升了不同场景下交通视频目标检测的稳健性,有效解决了目标尺度多变导致的视频中目标召回率低的问题。根据视频分辨率和目标尺寸,基于Multi⁃Patch方法自动将视频帧分割成最佳输入尺寸,使用YOLO v4神经网络并关联连续帧的上下文信息,采用增量式预测策略降低视频目标检测的漏检率,提升不同场景下视频目标的检测置信度得分和召回率。采集不同拍摄条件下的交通视频,验证该方法的有效性。试验结果表明,本文提出的目标检测方法召回率在80%以上,置信度平均得分在0.84以上。 展开更多
关键词 视频目标检测 多帧融合 yolo v4 卷积神经网络
下载PDF
基于YOLO V4的机房异常巡检研究 被引量:1
8
作者 曾路 汪浩 孙骏 《电力大数据》 2022年第6期56-61,共6页
为实时检测电网系统中机房异常情况,避免产生安全隐患和财产损失,提出了一种基于深度学习目标检测理论的机房异常巡检模型。该方法以CSPDarkNet-53卷积模型作为骨干网络,在数据预处理环节引入多种数据增强手段弥补数据数量不足的局限性... 为实时检测电网系统中机房异常情况,避免产生安全隐患和财产损失,提出了一种基于深度学习目标检测理论的机房异常巡检模型。该方法以CSPDarkNet-53卷积模型作为骨干网络,在数据预处理环节引入多种数据增强手段弥补数据数量不足的局限性,防止产生过拟合现象。以电网系统某机房为对象进行实验。实验结果表明,该方法能有效地检测到机房中常见的异常状况,检测精度符合实际场景需求。 展开更多
关键词 异常情况 yolo v4 CSPDarkNet-53 骨干网络 数据增强
下载PDF
基于DCN-Mobile-YOLO模型的多车道车辆计数 被引量:7
9
作者 文奴 郭仁忠 贺彪 《深圳大学学报(理工版)》 CAS CSCD 北大核心 2021年第6期628-635,共8页
单一目标检测方法无法实现目标计数的准确统计,且模型的检测精度和速度难以同步提升.以YOLO v4目标检测框架为基础,提出一种移动端的目标追踪和多车道车辆计数模型DCN-Mobile-YOLO.使用可变形卷积网络(deformable convolutional network... 单一目标检测方法无法实现目标计数的准确统计,且模型的检测精度和速度难以同步提升.以YOLO v4目标检测框架为基础,提出一种移动端的目标追踪和多车道车辆计数模型DCN-Mobile-YOLO.使用可变形卷积网络(deformable convolutional networks,DCNs)v2卷积核和移动端卷积网络MobileNet v3框架分别代替YOLO v4的常规卷积核和主干网络,结合DeepSORT算法实现对多目标的跟踪和计数,建立自适应车道检测规则并实现车道内车辆的精确计数.在VOC2007+2012数据集和GoPro采集数据上验证DCN-Mobile-YOLO模型的有效性.结果表明,DCN-Mobile-YOLO模型的平均精度均值相比主干网络为MobileNet v3和CSPDarkNet的YOLO v4算法分别提升了13.19%和6.63%,目标检测平均帧率为12帧/s.DCN-Mobile-YOLO模型不仅提高了目标检测模型的检测精度,且达到了移动端实时检测的速度. 展开更多
关键词 人工智能 视频目标检测 多目标跟踪 yolo v4 车流量 深度学习 卷积神经网络 目标计数
下载PDF
铁路接触网支柱的图像序列自适应识别方法
10
作者 黄竹安 宋浩然 +3 位作者 王浩然 刘俊博 顾子晨 戴鹏 《计算机测量与控制》 2023年第10期222-227,共6页
接触网支柱数字化管理是电气化铁路运维的关键环节,基于移动视频建立接触网支柱数字台账是高效、经济、便捷的技术手段;为实现对于移动视频图像序列中接触网支柱杆号的精准识别,提出了一种基于区域相关和改进SVTR网络的接触网支柱识别算... 接触网支柱数字化管理是电气化铁路运维的关键环节,基于移动视频建立接触网支柱数字台账是高效、经济、便捷的技术手段;为实现对于移动视频图像序列中接触网支柱杆号的精准识别,提出了一种基于区域相关和改进SVTR网络的接触网支柱识别算法;针对视频图像中接触网支柱区域重叠、结构模式复杂的特点,采用了YOLO v4网络对单帧图像中支柱区域和号牌标识区域分别进行检测,并通过测算交叠区域来获得距观察点最近的杆位和对应的号牌区域;此外,针对接触网杆号牌尺度多样性和字符变长的问题,在杆号文字识别问题中采用了SVTR-tiny网络,并进一步引入迁移学习方法增强模型对于复杂杆号的识别精度和对于不同线路场景的泛化性能;通过在实际高铁线路采集的移动视频数据集上进行测试,结果表明算法在移动视频中视野最近杆位杆号区域的定位检出率可达98.01%,杆号文本的识别准确率达到96.13%,适用于我国高速铁路主要干线建设配套的接触网支柱结构。 展开更多
关键词 接触网支柱识别 移动视频 yolo v4网络 区域相关 SVTR-tiny网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部