为了实现机器人焊接的免示教路径规划,结合深度学习与点云处理技术,开发了一种高效、稳定的焊缝智能识别算法.首先,采用ETH(Eye-to-hand)构型的工业级3D相机获取焊件周围的二维图像和3D点云模型,利用预先训练的YOLOv8目标检测模型识别...为了实现机器人焊接的免示教路径规划,结合深度学习与点云处理技术,开发了一种高效、稳定的焊缝智能识别算法.首先,采用ETH(Eye-to-hand)构型的工业级3D相机获取焊件周围的二维图像和3D点云模型,利用预先训练的YOLOv8目标检测模型识别焊件所在的ROI区域(region of interest,ROI),模型识别精度为99.5%,从而实现快速剔除背景点云,并基于RANSAC平面拟合、欧式聚类等点云处理算法,对ROI区域的三维点云进行焊缝空间位置的精细识别;最后根据手眼标定结果转化为机器人用户坐标系下的焊接轨迹.结果表明,文中所开发的算法可实现随机摆放的焊缝自动识别和焊接机器人路径规划,生成的轨迹与人工示教轨迹效果相当,偏差在0.5 mm以内.展开更多
城市道路普遍存在机动车、非机动车、行人的人车混行路段,车辆目标的准确识别与统计成为视频方法检测混合交通流量的关键问题。本文提出了基于深度学习YOLO(You Only Look Once)的车流量检测算法。用YOLO v2检测道路上移动的目标,对检...城市道路普遍存在机动车、非机动车、行人的人车混行路段,车辆目标的准确识别与统计成为视频方法检测混合交通流量的关键问题。本文提出了基于深度学习YOLO(You Only Look Once)的车流量检测算法。用YOLO v2检测道路上移动的目标,对检出目标中的车辆目标进行识别与筛选,设置感兴趣区域,在车辆目标经过感兴趣区域时计数,并用核相关滤波器跟踪车辆,避免车辆重复计数;在ARM上利用该算法实现了混合交通视频中的车流量检测。测试结果表明,该方法中车辆的检测、跟踪、计数结果良好,可应用于混合交通中的车流量检测。展开更多
文摘为了实现机器人焊接的免示教路径规划,结合深度学习与点云处理技术,开发了一种高效、稳定的焊缝智能识别算法.首先,采用ETH(Eye-to-hand)构型的工业级3D相机获取焊件周围的二维图像和3D点云模型,利用预先训练的YOLOv8目标检测模型识别焊件所在的ROI区域(region of interest,ROI),模型识别精度为99.5%,从而实现快速剔除背景点云,并基于RANSAC平面拟合、欧式聚类等点云处理算法,对ROI区域的三维点云进行焊缝空间位置的精细识别;最后根据手眼标定结果转化为机器人用户坐标系下的焊接轨迹.结果表明,文中所开发的算法可实现随机摆放的焊缝自动识别和焊接机器人路径规划,生成的轨迹与人工示教轨迹效果相当,偏差在0.5 mm以内.
文摘城市道路普遍存在机动车、非机动车、行人的人车混行路段,车辆目标的准确识别与统计成为视频方法检测混合交通流量的关键问题。本文提出了基于深度学习YOLO(You Only Look Once)的车流量检测算法。用YOLO v2检测道路上移动的目标,对检出目标中的车辆目标进行识别与筛选,设置感兴趣区域,在车辆目标经过感兴趣区域时计数,并用核相关滤波器跟踪车辆,避免车辆重复计数;在ARM上利用该算法实现了混合交通视频中的车流量检测。测试结果表明,该方法中车辆的检测、跟踪、计数结果良好,可应用于混合交通中的车流量检测。