为对风力机叶片损伤状态进行有效检测,提出一种基于改进YOLO-v3算法的风力机叶片表面损伤检测识别技术。根据风力机叶片损伤区域特点,对网络中锚框(anchor)的尺度进行调整优化;在特征提取网络后引入基于注意力机制的挤压与激励网络(sque...为对风力机叶片损伤状态进行有效检测,提出一种基于改进YOLO-v3算法的风力机叶片表面损伤检测识别技术。根据风力机叶片损伤区域特点,对网络中锚框(anchor)的尺度进行调整优化;在特征提取网络后引入基于注意力机制的挤压与激励网络(squeeze and excitation networks,SENet)结构,使YOLO-v3算法更加关注与目标相关的特征通道,提升网络性能。结果表明,改进后算法的平均精度为84.42%,较原YOLO-v3算法提升了6.14%,检测时间减少了21 ms,改进后的YOLO-v3算法能较好地识别出风力机叶片表面损伤。展开更多
针对嵌入式眼-机交互技术中所采用的传统眼行为识别方法准确率低、速度慢等问题,并结合所研制眼机交互系统硬件特点及应用场景,提出一种基于改进YOLO-v3的眼机交互模型。该模型通过去除13×13特征分辨率的检测模块、增加浅层网络的...针对嵌入式眼-机交互技术中所采用的传统眼行为识别方法准确率低、速度慢等问题,并结合所研制眼机交互系统硬件特点及应用场景,提出一种基于改进YOLO-v3的眼机交互模型。该模型通过去除13×13特征分辨率的检测模块、增加浅层网络的层数以及采用K-means聚类算法选取初始先验框,提高了网络像素特征提取细粒度并加快了检测速度,进而结合人眼特征参数提取方法和眼行为识别算法,构建出了眼机交互模型并进行实验。实验结果表明,该模型对不同眼行为的识别率达91.30%,改进的YOLO-v3网络的平均检测准确率(mean average precision,mAP)为99.9%,识别速度达22.8 FPS,相比原YOLO-v3方法检测时间缩短了11.4%。展开更多
文摘为对风力机叶片损伤状态进行有效检测,提出一种基于改进YOLO-v3算法的风力机叶片表面损伤检测识别技术。根据风力机叶片损伤区域特点,对网络中锚框(anchor)的尺度进行调整优化;在特征提取网络后引入基于注意力机制的挤压与激励网络(squeeze and excitation networks,SENet)结构,使YOLO-v3算法更加关注与目标相关的特征通道,提升网络性能。结果表明,改进后算法的平均精度为84.42%,较原YOLO-v3算法提升了6.14%,检测时间减少了21 ms,改进后的YOLO-v3算法能较好地识别出风力机叶片表面损伤。
文摘针对嵌入式眼-机交互技术中所采用的传统眼行为识别方法准确率低、速度慢等问题,并结合所研制眼机交互系统硬件特点及应用场景,提出一种基于改进YOLO-v3的眼机交互模型。该模型通过去除13×13特征分辨率的检测模块、增加浅层网络的层数以及采用K-means聚类算法选取初始先验框,提高了网络像素特征提取细粒度并加快了检测速度,进而结合人眼特征参数提取方法和眼行为识别算法,构建出了眼机交互模型并进行实验。实验结果表明,该模型对不同眼行为的识别率达91.30%,改进的YOLO-v3网络的平均检测准确率(mean average precision,mAP)为99.9%,识别速度达22.8 FPS,相比原YOLO-v3方法检测时间缩短了11.4%。