期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于YOLO-V5l与ResNet50的农田害虫检测 被引量:1
1
作者 柳春源 陈洪建 +2 位作者 曾小辉 向滔 寇喜鹏 《人工智能与机器人研究》 2022年第3期236-247,共12页
目前,我国农田受虫害影响日渐严重,虫情分析可以针对不同区域的农田虫情状况,制定不同的治理农田害虫方案。传统的虫情分析靠人工收集与统计,耗时耗力,随着深度学习技术在计算机视觉领域的发展,本文提出结合YOLO-V5l目标检测与ResNet50... 目前,我国农田受虫害影响日渐严重,虫情分析可以针对不同区域的农田虫情状况,制定不同的治理农田害虫方案。传统的虫情分析靠人工收集与统计,耗时耗力,随着深度学习技术在计算机视觉领域的发展,本文提出结合YOLO-V5l目标检测与ResNet50神经网络搭建农田害虫检测模型。昆虫在图像数据中呈现时具有体态多样、鳞片缺失、肢体脱落等特点,对目标检测与分类的影响较大,因此本文将28种害虫按照体态,颜色等进行粗分类为A~G七种后,利用YOLO-V5l模型对其进行检测与计数,再将检测结果代入ResNet50识别模型中确定其种类。这种方法极大降低了农田害虫检测的误检率。并且,本文提出一种预测增强算法,对待检测害虫图像进行增强后,分别带入识别模型中,对识别的结果取其加权平均,得到最终结果。单一的YOLO-V5l模型的mAP.5:.95为71.4%,平均精确率80.91%,漏检率5.39%。本文提出的虫情检测模型其平均精确率为89.56%,提升了对农田害虫的识别准确率。该模型将改善原始人工统计的缺点,推进我国智慧农业的发展。 展开更多
关键词 害虫检测 yolo-v5l ResNet50 目标检测
下载PDF
基于YOLO v5l-Im的排水管道缺陷检测方法及效果分析
2
作者 王俊岭 王晨晨 熊玉华 《科学技术与工程》 北大核心 2024年第18期7833-7842,共10页
针对YOLO v5l(you only look once version 5 large)算法对于小目标、少样本且背景复杂的排水管道缺陷图像检测的精度低、误检和漏检率较高等问题,提出了一种基于YOLO v5l-Im算法的排水管道缺陷检测改进方法。做了三点改进:首先提出了Fo... 针对YOLO v5l(you only look once version 5 large)算法对于小目标、少样本且背景复杂的排水管道缺陷图像检测的精度低、误检和漏检率较高等问题,提出了一种基于YOLO v5l-Im算法的排水管道缺陷检测改进方法。做了三点改进:首先提出了Focal-EIoU(focal embedding intersection over union)损失函数,有效提升了检测模型的性能;其次为增强检测模型对小目标缺陷的检测效果,减少缺陷误检和漏检的概率,将骨干网络中浅层特征图融合到双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)中,增加针对小目标的预测层;最后在YOLO v5l中引入坐标注意力机制(coordinate attention,CA),提高模型对图像中感兴趣区域的敏感程度,减少冗余背景信息的干扰。3种改进对平均检测准确率(mean average precision,mAP)的提升分别为2.0、2.9、5.9个百分点。将三种有效改进融合到一起,检测结果表明:本文提出的YOLO v5l-Im模型的mAP达到了92.1%,较原模型的85.5%提升了6.5个百分点。由此可见,所做的改进有效增强了YOLO v5l对排水管道缺陷的检测能力。 展开更多
关键词 排水管道缺陷检测 YOlO v5l Focal-EIoU损失函数 BiFPN特征网络 CA注意力模块 融合检测
下载PDF
基于轻量化网络与注意力机制的育肥猪采食行为识别方法研究 被引量:2
3
作者 陆舟 沈明霞 +3 位作者 刘龙申 薛鸿翔 丁奇安 陈佳 《南京农业大学学报》 CAS CSCD 北大核心 2023年第4期802-812,共11页
[目的]针对育肥猪采食行为识别误差大、检测速度慢等问题,提出一种具有轻量化结构的育肥猪采食行为检测模型,实现对育肥猪采食行为的快速检测与采食时长统计。[方法]以YOLO v5L目标检测算法为基础,构建侧视视角下的猪只采食行为检测模... [目的]针对育肥猪采食行为识别误差大、检测速度慢等问题,提出一种具有轻量化结构的育肥猪采食行为检测模型,实现对育肥猪采食行为的快速检测与采食时长统计。[方法]以YOLO v5L目标检测算法为基础,构建侧视视角下的猪只采食行为检测模型。对比更换不同轻量化主干网络后对模型检测效果的影响,选取性能最优的模型;改进ShuffleNet V2网络结构基本单元,采用Mish激活函数提高模型泛化能力与推理速度,引入SE注意力机制给予目标特征更高的权重以提高目标识别精度;对比分析模型增加非营养性访问行为检测前、后的采食行为识别准确率。[结果]优化后的育肥猪采食行为检测模型大小为38.2 MB,计算量为37.8 GFLOPs,视频检测平均帧耗时7.6 ms。与非营养性访问行为进行区分识别后,猪只采食行为检测识别准确率为96.4%,召回率为92.5%。模型检测采食时长与人工统计采食时长相对误差为6.1%。[结论]改进的YOLO v5L-ShuffleNet网络模型检测速度和模型大小均能满足实际生产需求,可在复杂养殖环境中全天候识别育肥猪采食行为。 展开更多
关键词 育肥猪 采食行为 轻量化模型 YOlO v5l 实时监测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部