期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于YOLON网络的多形态油茶果实夜间检测方法研究 被引量:1
1
作者 吕帅朝 马宝玲 +3 位作者 宋磊 王亚男 段援朝 宋怀波 《西北农林科技大学学报(自然科学版)》 CSCD 北大核心 2023年第8期141-154,共14页
【目的】提出了一种YOLON目标检测网络,为油茶果采收装置夜间非结构化环境下果实目标的精准识别提供技术支持。【方法】在改进YOLOv3的基础上建立YOLON目标检测网络,先在图像输入端添加照度调整模块(LA)对输入图像的照度进行自适应调整... 【目的】提出了一种YOLON目标检测网络,为油茶果采收装置夜间非结构化环境下果实目标的精准识别提供技术支持。【方法】在改进YOLOv3的基础上建立YOLON目标检测网络,先在图像输入端添加照度调整模块(LA)对输入图像的照度进行自适应调整,以加强前景图像特征的显著程度,利用特征提取网络对输入图像进行多次卷积以得到对应的特征图;然后在特征融合层添加夜间隐性知识模块(NPK),以先验信息的形式辅助网络预测,提高夜间果实目标的识别准确性;最后对网络特征图进行解码处理得到对应的目标检测框,从而完成对夜间油茶果实目标的检测。为验证所提出网络的有效性,采用准确率(P)、召回率(R)、平均精度均值(mAP)和综合评价指标(F1)对YOLON及对比网络YOLOv3、YOLOv4、YOLOv5s的检测效果进行定量评价。【结果】用YOLON和各对比网络在夜间油茶果数据集上进行训练和测试,YOLON网络的P、R、mAP、F1分别为94.00%,83.63%,94.37%和89.00%,mAP分别较YOLOv3、YOLOv4、YOLOv5s提高2.32%,4.93%和2.33%;对不同果实数量油茶果图像进行测试,YOLON在单果、双果和多果测试数据集上均有较好表现,其对这3类果实目标检测的mAP为98.34%,分别较YOLOv3、YOLOv4、YOLOv5s提高2.17%,8.99%和4.35%;对整树小尺寸油茶果实的检测效果,YOLON的mAP可达93.56%,分别较YOLOv3、YOLOv4、YOLOv5s高1.24%,8.66%和5.57%;在对整树油茶果实图像进行检测时,YOLON的平均置信度为0.69,分别较YOLOv3、YOLOv4、YOLOv5s高0.09,0.22和0.14;此外,用YOLON对夜间采集的处于重叠、遮挡、复杂背景等多态耦合下的油茶果实图像进行检测,也均具有较高的检测置信度。【结论】YOLON可以满足油茶果采收机器人果实定位精度的要求,将其应用于油茶果夜间图像的检测是可行的。 展开更多
关键词 油茶果 夜间果实识别 yolon YOLOv3 目标检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部