期刊文献+
共找到860,541篇文章
< 1 2 250 >
每页显示 20 50 100
基于改进YOLOX-S的太阳能电池片表面缺陷检测 被引量:2
1
作者 王淑青 朱文鑫 +1 位作者 张子言 王娟 《激光杂志》 CAS 北大核心 2024年第7期118-123,共6页
针对太阳能电池片表面缺陷检测存在模型体积大和检测性能不达标的问题,提出了一种轻量化YOLOX-S检测模型用于工业生产。首先以YOLOX-S模型为基础,采用轻量级网络MobileNetV3优化主干网络,减少模型参数,降低模型运算量,提高检测速度。其... 针对太阳能电池片表面缺陷检测存在模型体积大和检测性能不达标的问题,提出了一种轻量化YOLOX-S检测模型用于工业生产。首先以YOLOX-S模型为基础,采用轻量级网络MobileNetV3优化主干网络,减少模型参数,降低模型运算量,提高检测速度。其次采用FReLU激活函数改进MobileNetV3,使模型具有空间像素级建模能力,提高模型空间特征信息灵敏度,增强模型对小目标缺陷的特征提取能力。最后,在颈部网络引入注意力特征融合模块,聚合多尺度信息,加强模型的多尺度特征融合能力。实验结果表明,改进的YOLOX-S检测模型平均精度均值可达97.6%,参数量减少43.2%,检测速度达到51帧/s,置信度均在90%以上,检测结果可靠。 展开更多
关键词 太阳能电池片 缺陷检测 yolox-s 深度学习 轻量化
下载PDF
基于改进YOLOX-S的轻量化煤矸石检测方法研究 被引量:1
2
作者 高如新 杜亚博 常嘉浩 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第4期133-140,共8页
目的 为了探索基于现有机器视觉煤矸石检测方法的模型参数量、计算量对检测速度和嵌入式设备的影响,方法 提出一种基于改进的无锚框YOLOX-S轻量化煤矸石检测模型。为使模型能提取更真实的煤矸石特征信息,收集分选现场煤矸石样本,保证实... 目的 为了探索基于现有机器视觉煤矸石检测方法的模型参数量、计算量对检测速度和嵌入式设备的影响,方法 提出一种基于改进的无锚框YOLOX-S轻量化煤矸石检测模型。为使模型能提取更真实的煤矸石特征信息,收集分选现场煤矸石样本,保证实际环境下的煤矸石检测效果,适应实际生产环境。结合CSPNet,将输入的特征图分割成两个分支,实现更丰富的梯度组合,同时减少模型计算量;之后在其中一条分支使用Ghost轻量化卷积,通过少量常规卷积生成一组特征图,达到初次减少计算量和参数量的效果,然后在此特征图基础上经过简单线性变化操作,生成一组新的特征图,将两组特征图进行融合,降低对计算资源需求的同时,也达到了常规卷积相同的特征提取效果;引入LeakyReLU激活函数减弱模型梯度消失的影响,提取更深更多的特征信息;最后融合两个分支特征,保证较高的检测精度,提升模型检测速度。采用CIOU Loss(complete IOU loss)优化目标边界框回归损失函数,使模型回归损失收敛更快,提高模型目标定位能力。结果 与原模型相比,本文改进模型在保证较高的平均精度均值90.51%情况下,模型参数减少47%,计算量减少49%,检测速度达到50帧/s。结论 轻量化煤矸石检测模型使智能化煤矸石检测在实际生产环境中具有一定的应用前景。 展开更多
关键词 煤矸石检测 yolox-s 轻量化 目标定位 检测速度
下载PDF
基于轻量化YOLOX-S与多阈值分割的矿山遥感图像去噪算法
3
作者 沈丹萍 赵爽 《金属矿山》 CAS 北大核心 2024年第9期175-180,共6页
矿山遥感图像普遍存在大量的噪点,给后续图像分析和处理带来了很大困难。提出了一种基于轻量化目标检测模型YOLOX-S和多阈值分割的矿山遥感图像去噪算法。首先使用YOLOX-S模型对矿山遥感图像进行目标检测,得到矿山目标的位置信息。然后... 矿山遥感图像普遍存在大量的噪点,给后续图像分析和处理带来了很大困难。提出了一种基于轻量化目标检测模型YOLOX-S和多阈值分割的矿山遥感图像去噪算法。首先使用YOLOX-S模型对矿山遥感图像进行目标检测,得到矿山目标的位置信息。然后针对矿山目标的特点,设计了一种多阈值分割方法消除图像中的噪声点。通过将图像分为若干个子区域,并对每个子区域采用不同的阈值进行二值化处理,最终将各子区域的二值化结果合并得到去噪后的图像。试验结果表明:该算法能够有效地去除矿山遥感图像中的噪声点,并且在保留目标特征的同时,大幅提升了图像质量。此外,由于采用了轻量化模型和多阈值分割算法,使得该算法具有较快的处理速度和较低的计算成本,适用于大规模图像数据的处理任务。 展开更多
关键词 矿山遥感图像 轻量化 yolox-s 阈值分割 图像去噪
下载PDF
基于改进YOLOX-S的苹果成熟度检测方法 被引量:1
4
作者 黄威 刘义亭 +1 位作者 李佩娟 陈光明 《中国农机化学报》 北大核心 2024年第3期226-232,共7页
准确检测果园中未成熟与成熟的苹果对果园早期作物的负荷管理至关重要,提出一种能够实时检测苹果成熟度,并估算出整棵果树果实数量的方法。为提高YOLOX-S网络在复杂场景下的检测能力,在FPN(特征金字塔)的残差连接处增加了CoordinateAtte... 准确检测果园中未成熟与成熟的苹果对果园早期作物的负荷管理至关重要,提出一种能够实时检测苹果成熟度,并估算出整棵果树果实数量的方法。为提高YOLOX-S网络在复杂场景下的检测能力,在FPN(特征金字塔)的残差连接处增加了CoordinateAttention(位置注意力);为更好地检测图像中生长密集、存在遮挡、尺寸较小的苹果,将位置损失函数IoU_Loss更换为CIoU_Loss。试验结果表明,所提出的改进YOLOX-S检测算法相较于原算法,mAP值提高约1.97%,苹果低成熟度、中等成熟度和高等成熟度的AP值分别为90.85%、95.10%和80.50%。 展开更多
关键词 苹果 yolox-s 目标检测 位置注意力 成熟度检测
下载PDF
改进YOLOX-s的密集垃圾检测方法 被引量:1
5
作者 谢若冰 李茂军 +1 位作者 李宜伟 胡建文 《计算机工程与应用》 CSCD 北大核心 2024年第5期250-258,共9页
针对密集堆放的多种类垃圾检测存在识别率低、定位不够准确和待测目标被误检、漏检问题,提出了一种融合多头自注意力机制改进YOLOX-s的垃圾检测方法。在特征提取网络嵌入SwinTransformer模块,引入基于滑窗操作的多头自注意力机制,使得... 针对密集堆放的多种类垃圾检测存在识别率低、定位不够准确和待测目标被误检、漏检问题,提出了一种融合多头自注意力机制改进YOLOX-s的垃圾检测方法。在特征提取网络嵌入SwinTransformer模块,引入基于滑窗操作的多头自注意力机制,使得网络兼顾全局特征信息和重点特征信息,减少误检现象;在预测输出网络中使用可变形卷积,对初始预测框进行精细化处理,提高定位精度;在EIoU损失的基础上引入加权系数,提出加权IoU-EIoU损失,自适应调整训练时不同阶段不同损失的关注程度,进一步加快训练网络的收敛速度。在公开204类垃圾检测数据集中进行测试,结果表明,所提改进算法的平均精度均值分别可达80.5%和92.5%,优于当前流行目标检测算法,且检测速度快,满足实时性需求。 展开更多
关键词 密集垃圾检测 多头自注意力机制 yolox-s 深度学习
下载PDF
YOLOX-S声光信息融合目标识别算法
6
作者 杨茸宇 刘凤丽 郝永平 《探测与控制学报》 CSCD 北大核心 2024年第5期71-79,共9页
针对现代战场单一探测手段的局限性和单模态目标识别存在信息不全面、易受噪声干扰等缺点,提出一种融合声光两种模态的目标识别方法。该方法利用深度卷积残差网络对声纹信息的对数梅尔频谱系数特征进行提取,使用YOLOX-S网络对目标进行... 针对现代战场单一探测手段的局限性和单模态目标识别存在信息不全面、易受噪声干扰等缺点,提出一种融合声光两种模态的目标识别方法。该方法利用深度卷积残差网络对声纹信息的对数梅尔频谱系数特征进行提取,使用YOLOX-S网络对目标进行光学特征提取,并计算目标的像空间位置与类别信息,然后在YOLOX-S模型预测部分的解耦头中引入用于处理声音特征的支路,将目标的光学特性与声学特性在YOLOX-S检测头分类支路上进行空间归一化,使视觉数据与声纹数据在同一可拼接域上进行映射与融合,对目标的声光融合特征进行识别推理。在自建数据集上进行验证,实验结果表明声纹信息和图像信息融合可以提供更全面的感知能力,使得目标的检测和识别更加准确和可靠。 展开更多
关键词 目标识别 特征融合 yolox-s 声纹特征
下载PDF
基于改进YOLOX-s算法的航天太阳电池缺陷检测
7
作者 李振伟 张仕海 +2 位作者 屈重年 汝承印 陈康静 《太阳能学报》 EI CAS CSCD 北大核心 2024年第9期276-284,共9页
针对航天太阳电池表面缺陷检测问题,提出基于机器视觉与深度学习的缺陷检测方法。通过航天太阳电池缺陷检测系统获取图像,并依据企业电池片缺陷的分类标准构建航天太阳电池缺陷数据集。采用切片技术获取包含缺陷目标的子图像数据集,解... 针对航天太阳电池表面缺陷检测问题,提出基于机器视觉与深度学习的缺陷检测方法。通过航天太阳电池缺陷检测系统获取图像,并依据企业电池片缺陷的分类标准构建航天太阳电池缺陷数据集。采用切片技术获取包含缺陷目标的子图像数据集,解决卷积和下采样操作信息丢失而导致召回率低的问题。针对不同缺陷采取适当的图像增强方式进行扩充数据集,以避免训练过程中因数据集不足导致的过拟合问题。采用深度可分离卷积、优化损失函数、双线性插值上采样及引入注意力机制等方法对YOLOX-s算法进行改进,以获得综合效果最佳的航天太阳电池缺陷检测模型。通过不同数据集训练及检测精度指标对比,以及消融实验验证改进模型的有效性。通过改进模型与同类主流模型对比实验,验证改进模型在航天太阳电池缺陷检测方面的优越性。 展开更多
关键词 太阳电池 机器视觉 深度学习 yolox-s 缺陷检测
下载PDF
改进YOLOX-S的偏光片表面缺陷检测算法 被引量:1
8
作者 陈乐 周永霞 祖佳贞 《计算机工程与应用》 CSCD 北大核心 2024年第2期295-303,共9页
偏光片是液晶显示器的重要组成部分,其表面缺陷不仅会降低液晶显示器的显示质量,甚至可能造成整个液晶面板的报废。针对偏光片表面缺陷存在尺度差异大、形状变化多样的问题,提出一种改进YOLOX-S的偏光片表面缺陷检测算法。提出自适应平... 偏光片是液晶显示器的重要组成部分,其表面缺陷不仅会降低液晶显示器的显示质量,甚至可能造成整个液晶面板的报废。针对偏光片表面缺陷存在尺度差异大、形状变化多样的问题,提出一种改进YOLOX-S的偏光片表面缺陷检测算法。提出自适应平衡特征金字塔(ABFP)模块充分融合主干网提取的多级特征,并通过单个卷积增加检测分支,进一步增强模型的多尺度检测能力。在ABFP中引入注意力模块CBAM关注重要特征。采用CIo U损失函数的同时使用Mish激活函数替代Si LU激活函数。实验结果表明,改进的算法在偏光片表面缺陷数据集上的m AP_(50)和m AP_(50:95)分别达到92.97%和55.16%,相比YOLOX-S(FPN)提升了1.86和1.34个百分点,每秒检测帧数(FPS)达到50,基本满足工业实时检测的需求。 展开更多
关键词 偏光片表面 缺陷检测 yolox-s 自适应平衡特征金字塔 CIoU Mish
下载PDF
基于改进YOLOX-S的玉米病害识别
9
作者 李名博 任东悦 +1 位作者 郭俊旺 卫勇 《江苏农业科学》 北大核心 2024年第3期237-246,共10页
在玉米病害的影响下,玉米产量下降,其中大部分病害症状均反映在玉米的叶片上。针对人工识别叶片费时、费力、准确率低的问题提出了一种基于改进YOLOX-S网络的玉米病害识别模型,并将该模型部署到Atlas 200DK开发板中。该研究在YOLOX-S的... 在玉米病害的影响下,玉米产量下降,其中大部分病害症状均反映在玉米的叶片上。针对人工识别叶片费时、费力、准确率低的问题提出了一种基于改进YOLOX-S网络的玉米病害识别模型,并将该模型部署到Atlas 200DK开发板中。该研究在YOLOX-S的基础上添加了4个CBAM注意力机制模块,其中3个注意力机制模块添加到网络的Backbone与Neck之间,第4个注意力机制模块添加到SPPBottleneck的2次上采样结果后,通过使用不同的权重来调整不同病害特征细节的重要程度,能够提高模型收敛速度,有效提升模型的识别精度,并基于Atlas 200DK开发板的特性及相关属性,将改进后的模型部署到开发板当中,实现了算法的移植。结果表明,改进后的YOLOX-S网络模型与YOLO v3、YOLO v4、Faster R-CNN模型相比,在识别率与精确性方面有着显著的优势,与原模型相比,识别准确率(mAP值)提高0.2百分点,改进后的YOLOX-S网络模型对玉米病害的识别准确率高达98.75%,并且部署到Atlas 200DK开发板的模型仍然发挥良好的检测性能,可以为识别玉米病害提供参考。 展开更多
关键词 病害识别 深度学习 改进型yolox-s 数据增强 模型部署
下载PDF
基于改进YOLOX-s的风机叶片表面缺陷检测
10
作者 张龙 吕鹏远 +1 位作者 兰金江 董鹏辉 《自动化与仪表》 2024年第11期69-73,78,共6页
提出一种改进YOLOX-s的缺陷检测方法。主要工作包括以下3个方面:第一,通过Imgaug数据增强策略重新构建了风机叶片缺陷数据集,弥补真实场景下的数据量不足;第二,采用模型压缩策略,对骨干网络的部分模块进行删减,并引入深度可分离卷积,提... 提出一种改进YOLOX-s的缺陷检测方法。主要工作包括以下3个方面:第一,通过Imgaug数据增强策略重新构建了风机叶片缺陷数据集,弥补真实场景下的数据量不足;第二,采用模型压缩策略,对骨干网络的部分模块进行删减,并引入深度可分离卷积,提升模型的推理速度,重构CBS卷积块为DSCBM模块,用于稳定网络性能;第三,引入GiraffeNeck融合机制和CA坐标注意力机制,提高模型对不同尺度特征的融合能力以及对缺陷目标的检测能力,对Head层进行改进,删减部分冗余的卷积块,进一步提升检测速度。实验结果表明,与YOLOX-s模型相比,mAP值提升2.6%,检测速度提高39帧/s。 展开更多
关键词 风机叶片 深度学习 注意力机制 轻量化 yolox-s
下载PDF
基于改进YOLOX-S的足球比赛视频目标检测方法
11
作者 何妍妍 《高师理科学刊》 2024年第1期30-35,共6页
为了提升足球赛事水平,催生出足球新战术,识别足球巨星梅西和足球的位置,为进一步的跟踪提供良好的基础,提出了一种基于改进YOLOX-S的足球赛事目标检测方法.使用Pseudo-IoU度量,改进了YOLOX-S中的正样本初步筛选机制,将更标准化和准确... 为了提升足球赛事水平,催生出足球新战术,识别足球巨星梅西和足球的位置,为进一步的跟踪提供良好的基础,提出了一种基于改进YOLOX-S的足球赛事目标检测方法.使用Pseudo-IoU度量,改进了YOLOX-S中的正样本初步筛选机制,将更标准化和准确的分配规则引入到YOLOX-S无锚检测框架.在损失函数中使用了Focal Loss,以平衡难易样本.实验结果表明,相较于YOLOX-S模型,所提模型具有更好的综合表现,足球类别平均精度为79.8%,梅西类别平均精度为72.6%,平均精度均值为76.2%. 展开更多
关键词 目标检测 yolox-s 足球赛事 Pseudo-Iou度量 Focal Loss
下载PDF
基于改进YOLOX-s的车辆检测方法研究 被引量:3
12
作者 张稀柳 张晓玲 何敏军 《系统仿真学报》 CAS CSCD 北大核心 2024年第2期487-496,共10页
为缓解车辆小目标漏检及误检问题,提出一种基于YOLOX网络的多尺度特征融合的改进车辆检测模型。设计基于深度可分离卷积的Ghost-CSP(cross stage partial),替换网络的部分跨阶段局部结构,加快检测速度;将模型的最大池化方式改进为Softp... 为缓解车辆小目标漏检及误检问题,提出一种基于YOLOX网络的多尺度特征融合的改进车辆检测模型。设计基于深度可分离卷积的Ghost-CSP(cross stage partial),替换网络的部分跨阶段局部结构,加快检测速度;将模型的最大池化方式改进为Softpool方式,并引入坐标注意力机制,增强待检测目标的特征表达,优化目标漏检问题;选用Focal Loss作为模型置信度损失函数以增加分类不准确样本的权重,提高模型对小目标的预测能力。实验结果表明:改进算法平均准确率提高到74.96%,速度达到73帧/s,在满足实时性要求下可以更好地完成车辆目标检测要求。 展开更多
关键词 YOLOX 多尺度特征融合 车辆检测模型 Softpool 坐标注意力 Focal Loss
下载PDF
基于改进YOLOX-s的田间麦穗检测及计数 被引量:2
13
作者 沈志豪 刘金江 张建洋 《江苏农业科学》 北大核心 2023年第12期164-171,共8页
麦穗检测与计数关乎小麦的产量预估与育种,估算小麦产量的重要指标之一就是单位面积穗数,如何准确检测单位面积穗数对于农业生产管理决策有着重要的指导作用。因此本研究提出了基于改进的YOLOX-s的田间麦穗检测方法对麦穗进行精准识别... 麦穗检测与计数关乎小麦的产量预估与育种,估算小麦产量的重要指标之一就是单位面积穗数,如何准确检测单位面积穗数对于农业生产管理决策有着重要的指导作用。因此本研究提出了基于改进的YOLOX-s的田间麦穗检测方法对麦穗进行精准识别与计数。首先,选取多个国家的不同品种小麦图像,使用图像增强、数据清洗等方法建立全球小麦图像数据集。其次,在YOLOX-s的基础上根据麦穗图像的特点,重新设计了特征提取网络的深度,同时加入注意力机制,充分提取麦穗特征。将SPP模块替换为SPPF模块,在提升推理速度的同时,不降低模型性能。通过全球小麦图像数据集进行模型训练,并使用实地拍摄的麦田图像对模型进行测试。试验结果表明:通过全球小麦图像数据集的训练,改进的YOLOX-s网络模型的mAP达到了89.03%,精确度达到了91.21%。在实拍的麦田图像中,计数准确率达到了97.93%,平均单幅图像计数为0.194 s,单株小麦识别速度为2.8 ms,检测速度较YOLOX-s提升30.2%,计数速度优异,麦穗定位准确。 展开更多
关键词 yolox-s 麦穗计数 轻量级 卷积神经网络 注意力机制 Soft NMS
下载PDF
采用STAMP-24Model的多组织事故分析
14
作者 曾明荣 秦永莹 +2 位作者 刘小航 栗婧 尚长岭 《安全与环境学报》 CAS CSCD 北大核心 2024年第7期2741-2750,共10页
安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事... 安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事故分析的方法,并以青岛石油爆炸事故为例进行事故原因分析。结果显示:STAMP-24Model可以分组织,分层次且有效、全面、详细地分析涉及多个组织的事故原因,探究多组织之间的交互关系;对事故进行动态演化分析,可得到各组织不安全动作耦合关系与形成的事故失效链及管控失效路径,进而为预防多组织事故提供思路和参考。 展开更多
关键词 安全工程 系统理论事故建模与过程模型(STAMP) 24model 多组织事故 原因分析
下载PDF
基于改进24Model-ISM-SNA建筑工人不安全行为关联路径研究
15
作者 赵平 刘钰 +1 位作者 靳丽艳 王佳慧 《工业安全与环保》 2024年第7期37-40,共4页
建筑施工现场环境复杂,为有效控制不安全行为发生,基于行为安全“2-4”模型对360份具有代表性的建筑安全事故调查报告进行分析,提取出22个不安全行为的主要影响因素。利用灰色关联分析方法(GRA)改进的集成ISM-SNA模型,将不安全行为风险... 建筑施工现场环境复杂,为有效控制不安全行为发生,基于行为安全“2-4”模型对360份具有代表性的建筑安全事故调查报告进行分析,提取出22个不安全行为的主要影响因素。利用灰色关联分析方法(GRA)改进的集成ISM-SNA模型,将不安全行为风险因素划分为表层、过渡层与深层,然后对风险因素进行可视化分析、中心度分析及凝聚子群分析,揭示了各致因因素间的关联关系和传导路径。结果表明,建筑工人不安全行为影响因素可划分成7级3阶的多级递阶结构,安全意识、现场监管、外部环境是建筑工人不安全行为的关键影响因素,同时现场监管和隐患排查到位能有效降低不安全行为的发生。 展开更多
关键词 建筑工人 不安全行为 24model 解释结构模型(ISM) 社会网络分析(SNA)
下载PDF
改进YOLOX-S实时多尺度交通标志检测算法 被引量:2
16
作者 王能文 张涛 《计算机工程与应用》 CSCD 北大核心 2023年第21期167-175,共9页
交通标志检测对于无人驾驶系统来说是一项具有挑战性的任务。针对交通标志检测过程中,目标小、受背景环境影响等难点,提出一种基于改进YOLOX-S的算法。设计ResNet50-vd-dcn替换原YOLOX-S中的CSPDarknet53主干网络,使用ResNet-D结合可变... 交通标志检测对于无人驾驶系统来说是一项具有挑战性的任务。针对交通标志检测过程中,目标小、受背景环境影响等难点,提出一种基于改进YOLOX-S的算法。设计ResNet50-vd-dcn替换原YOLOX-S中的CSPDarknet53主干网络,使用ResNet-D结合可变性卷积,减少了模型的计算量同时也保证了网络的学习能力。提出增强特征图模块,该模块利用特征图连接流和注意力机制流来减少特征图生成过程中的信息丢失,进而提高模型的表示能力。提出一种三通道加权双向特征金字塔网络替换原有特征金字塔结构,可以有效加强特征融合,提高多尺度目标识别能力。为增加模型对正样本的学习,在后处理阶段引入Focal Loss损失函数。实验结果表明,与原YOLOX-S算法相比,在TT100K数据集上小目标精度、小目标召回率以及mAP分别提升了2.8、4.1、2.1个百分点,同时检测速度快了2.3 FPS。在CCTSDB数据上mAP提升了1.1个百分点,检测速度为120 FPS,满足实时检测的要求。 展开更多
关键词 交通标志检测 yolox-s 小目标检测 特征增强 注意力机制流
下载PDF
基于24Model的地铁内涝事故原因分析与评估
17
作者 张江石 胡馨月 +3 位作者 侯轩 李泳暾 李梓萌 高进东 《安全与环境工程》 CAS CSCD 北大核心 2024年第6期111-117,共7页
为降低地铁内涝事故灾害风险,基于事故致因“2-4”模型,分析了地铁内涝事故致灾因子,采用层次分析法构建了地铁内涝事故原因分析指标体系,确定了各风险因子的权重,并利用模糊综合评价法对地铁内涝事故进行了定量评估,识别出关键的影响... 为降低地铁内涝事故灾害风险,基于事故致因“2-4”模型,分析了地铁内涝事故致灾因子,采用层次分析法构建了地铁内涝事故原因分析指标体系,确定了各风险因子的权重,并利用模糊综合评价法对地铁内涝事故进行了定量评估,识别出关键的影响因素。结果表明:地铁内涝事故一级指标中不安全动作与物态因素最重要,其中影响最大的指标包括擅自更改建筑设计、未按照要求检查水位情况、未及时排水、出入口不符合防汛标准等因素;习惯性不安全行为的权重位居第二,表明该指标因素较为重要,同时安全管理体系得分位居第二,表明该指标因素较易发生。对关键指标采取防范措施,可有效降低风险,从而减少地铁内涝事故的发生。 展开更多
关键词 安全工程 地铁内涝 24model 层次分析法 模糊综合评价法
下载PDF
基于YOLOX-S的车窗状态识别算法 被引量:2
18
作者 黄键 徐伟峰 +2 位作者 苏攀 王洪涛 李真真 《吉林大学学报(理学版)》 CAS 北大核心 2023年第4期875-882,共8页
通过对YOLOX-S模型引入可变形卷积神经网络和焦点损失函数(Focal loss),解决原YOLOX-S模型车窗识别准确率较低的问题.首先,通过在YO LOX-S模型的主干特征提取网络中引入可变形卷积神经网络,对卷积核中的各采样点引入偏移量,以便在原始... 通过对YOLOX-S模型引入可变形卷积神经网络和焦点损失函数(Focal loss),解决原YOLOX-S模型车窗识别准确率较低的问题.首先,通过在YO LOX-S模型的主干特征提取网络中引入可变形卷积神经网络,对卷积核中的各采样点引入偏移量,以便在原始图像中提取到更具有表征的信息,从而提高车窗识别的精准度;其次,使用Focal loss替代原模型中的二元交叉熵损失函数,Focal loss能缓解正负样本不平衡对训练的影响,其在训练过程中更关注难样本,从而提高了模型对车窗目标的识别性能;最后,为验证改进算法的性能,实验收集并标注15627张图片进行训练和验证.实验结果表明,改进后的车窗识别算法的平均目标精度提高了3.88%. 展开更多
关键词 车窗识别 yolox-s模型 可变形卷积神经网络 焦点损失
下载PDF
基于改进YOLOX-s的安全帽检测 被引量:3
19
作者 苏鹏 刘美 马思群 《计算机系统应用》 2023年第7期145-154,共10页
在施工现场中,发生过许多高空坠落事故,因此在施工现场佩戴安全帽是十分有必要的.针对安全帽佩戴状况检测中遇到的小目标样本缺检、漏检的情况,提出一种基于YOLOX-s的改进算法.首先,在Neck层引入主干特征提取网络中的160×160特征... 在施工现场中,发生过许多高空坠落事故,因此在施工现场佩戴安全帽是十分有必要的.针对安全帽佩戴状况检测中遇到的小目标样本缺检、漏检的情况,提出一种基于YOLOX-s的改进算法.首先,在Neck层引入主干特征提取网络中的160×160特征层进行特征融合,并且增加了一个针对小目标的检测头;其次,采用SIoU损失函数计算损失值,使得网络在训练过程中考虑的损失项更加全面;并且采用varifocal loss函数来计算置信度损失值,进一步改善训练过程中存在的正样本与困难样本不均衡的问题,最后,采用CA(coordinate attention)注意力机制来增强模型的特征表达能力.实验结果表明,通过对Neck层与检测层、损失函数的优化以及引入CA注意力机制,使得网络在训练过程中收敛与回归性能更佳.改进后的算法的mAP值为95.57%,相较于YOLOv3及原YOLOX-s算法在mAP值上分别提高了17.11%、3.59%.改进后的算法检测速度为54.73帧/s,符合实时检测速度要求. 展开更多
关键词 安全帽检测 yolox-s 小目标检测 SIoU损失函数 varifocal loss函数 注意力机制
下载PDF
基于IOA技术与YOLOX-s算法的农作物虫害监测系统研究 被引量:3
20
作者 丁元昊 王雯 +2 位作者 余建国 王永庆 靳梦欣 《物联网技术》 2023年第7期26-30,共5页
虫害是造成农作物减质减产的最主要原因,引入新一代信息技术可以及时有效防治虫害。本文基于农业物联网(Internet of Agriculture,IOA)技术与YOLOX-s目标检测算法设计并搭建了一套农作物虫害监测系统。系统整体框架由信息感知层、信息... 虫害是造成农作物减质减产的最主要原因,引入新一代信息技术可以及时有效防治虫害。本文基于农业物联网(Internet of Agriculture,IOA)技术与YOLOX-s目标检测算法设计并搭建了一套农作物虫害监测系统。系统整体框架由信息感知层、信息传输层、信息服务层和系统应用层组成,选用YOLOX-s目标检测算法实现虫害识别功能。实验结果表明,该算法提高了农作物虫害监测的识别准确率。本文所研究的系统有助于农作物虫害防治工作,为智能化虫害防治提供重要参考。 展开更多
关键词 农业物联网 农作物虫害 IOA 深度学习 yolox-s 智能化
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部