期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOX-tiny算法的交警手势识别
1
作者 方吴逸 陈章进 唐英杰 《电子测量技术》 北大核心 2024年第8期100-109,共10页
为了在城市中实现无人驾驶,需要能够高效检测交警的现场指挥手势。针对现有手势识别算法识别精度低、检测速度慢、难以应对复杂道路环境等问题,提出一种改进的YOLOX-tiny交警手势识别算法。首先,使用改进后的GhostNet网络替换原主干网络... 为了在城市中实现无人驾驶,需要能够高效检测交警的现场指挥手势。针对现有手势识别算法识别精度低、检测速度慢、难以应对复杂道路环境等问题,提出一种改进的YOLOX-tiny交警手势识别算法。首先,使用改进后的GhostNet网络替换原主干网络,并且插入坐标注意力机制,全面提取输入图像特征,提高了网络的检测精度,同时提升了对中小型目标的检测效果;其次,改进解耦头部分,设计了SCDE Head结构,在减少计算量的同时过滤冗余信息,使得解耦头更有效率,并且解耦头融合了多尺度的特征,提升了目标检测准确率;最后,将SIoU应用到定位损失中,加快网络收敛的速度,提升回归精度。在自制的交警指挥手势数据集上进行测试,实验结果表明,与YOLOX-tiny模型对比,改进后算法参数量减少了27.97%,模型计算量减少了33.31%,且平均检测精度提高了2.31%,检测速度提升了45%,更适合汽车无人驾驶以及硬件部署方面的实际需求。 展开更多
关键词 交警手势识别 yolox-tiny 网络轻量化 GhostNet 注意力机制
下载PDF
基于YOLOX-Tiny的轻量级遥感图像目标检测模型 被引量:8
2
作者 郎磊 刘宽 王东 《激光与光电子学进展》 CSCD 北大核心 2023年第2期352-362,共11页
为了解决高分辨率遥感图像目标检测存在的背景复杂多样、密集的物体分布及目标尺度差异大等问题,同时考虑到应用场景对模型资源的限制,提出了一种基于YOLOX-Tiny的轻量级遥感目标检测网络。首先采用多尺度预测方法增强对密集目标的检测... 为了解决高分辨率遥感图像目标检测存在的背景复杂多样、密集的物体分布及目标尺度差异大等问题,同时考虑到应用场景对模型资源的限制,提出了一种基于YOLOX-Tiny的轻量级遥感目标检测网络。首先采用多尺度预测方法增强对密集目标的检测能力;其次引入协同注意力模块提高重要特征关注度,抑制背景噪声;再者通过可变形卷积替换关键预测卷积层,强化空间建模能力;最后优化损失函数,改善遥感目标定位精度。在公开的遥感图像目标检测数据集DIOR上评估了所提算法的有效性,实验结果表明:相比基准算法(YOLOX-Tiny),所提算法在平均精度(AP)和AP50指标上分别提升4.1个百分点和4.42个百分点;在保持较高精度的前提下,每秒检测帧数(FPS)达到46,可满足实时检测的需求,优于其他先进算法。 展开更多
关键词 遥感 目标检测 yolox-tiny 遥感图像 协同注意力模块 可变形卷积 CIOU
原文传递
基于注意力和对比学习的轻量级交通标志检测方法
3
作者 邵叶秦 王梓腾 +4 位作者 张若为 胡彬 曹秋阳 周瑞 冯林威 《南通职业大学学报》 2024年第1期63-69,共7页
为提升交通标志检测精度和速度,针对交通标志目标小、尺度变化大等问题,提出一种基于注意力和对比学习的轻量级交通标志检测算法:首先,在特征提取主干网络中采用通道和空间分离方法依次进行卷积操作,构建多层次的特征提取网络,减少运算... 为提升交通标志检测精度和速度,针对交通标志目标小、尺度变化大等问题,提出一种基于注意力和对比学习的轻量级交通标志检测算法:首先,在特征提取主干网络中采用通道和空间分离方法依次进行卷积操作,构建多层次的特征提取网络,减少运算量;其次,采用基于注意力的上下文特征金字塔网络,获取目标的代表性特征,提升模型准确率;最后,采用监督对比学习损失(Supervised Contrastive Loss,SCL)函数,提高模型的特征判别能力。实验结果表明,该交通标志检测算法的平均检测精度达95.8%,相比于YOLOX-Tiny提升了4.5%,检测速度为79帧/s,能够满足实际应用需要。 展开更多
关键词 交通标志检测 特征金字塔 注意力 对比学习 yolox-tiny模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部