为实现田间环境下对玉米苗和杂草的高精度实时检测,本文提出一种融合带色彩恢复的多尺度视网膜(Multi-scale retinex with color restoration,MSRCR)增强算法的改进YOLOv4tiny模型。首先,针对田间环境的图像特点采用MSRCR算法进行图像...为实现田间环境下对玉米苗和杂草的高精度实时检测,本文提出一种融合带色彩恢复的多尺度视网膜(Multi-scale retinex with color restoration,MSRCR)增强算法的改进YOLOv4tiny模型。首先,针对田间环境的图像特点采用MSRCR算法进行图像特征增强预处理,提高图像的对比度和细节质量;然后使用Mosaic在线数据增强方式,丰富目标检测背景,提高训练效率和小目标的检测精度;最后对YOLOv4tiny模型使用K-means++聚类算法进行先验框聚类分析和通道剪枝处理。改进和简化后的模型总参数量降低了45.3%,模型占用内存减少了45.8%,平均精度均值(Mean average precision,mAP)提高了2.5个百分点,在Jetson Nano嵌入式平台上平均检测帧耗时减少了22.4%。本文提出的PruneYOLOv4tiny模型与Faster RCNN、YOLOv3tiny、YOLOv43种常用的目标检测模型进行比较,结果表明:PruneYOLOv4tiny的mAP为96.6%,分别比Faster RCNN和YOLOv3tiny高22.1个百分点和3.6个百分点,比YOLOv4低1.2个百分点;模型占用内存为12.2 MB,是Faster RCNN的3.4%,YOLOv3tiny的36.9%,YOLOv4的5%;在Jetson Nano嵌入式平台上平均检测帧耗时为131 ms,分别是YOLOv3tiny和YOLOv4模型的32.1%和7.6%。可知本文提出的优化方法在模型占用内存、检测耗时和检测精度等方面优于其他常用目标检测算法,能够为硬件资源有限的田间精准除草的系统提供可行的实时杂草识别方法。展开更多
一种基于YOLOv4(you only look once version 4)模型的交通路标识别方案,可用于解决交通管理领域中的交通路标识别问题。其主要是采用YOLOv4模型作为基础架构,利用深度学习和图像处理技术,结合深度卷积神经网络和目标检测算法,高效、快...一种基于YOLOv4(you only look once version 4)模型的交通路标识别方案,可用于解决交通管理领域中的交通路标识别问题。其主要是采用YOLOv4模型作为基础架构,利用深度学习和图像处理技术,结合深度卷积神经网络和目标检测算法,高效、快速地进行交通路标的准确识别。经过多个公开的交通路标检测数据集进行了严格的测试和性能进行比较、验证,在不同类型的交通路标上取得了优异的检测和识别性能,具有高的准确率和召回率。展开更多
为解决番茄缺陷检测过程中的精确性和实时性问题,该研究提出一种基于模型剪枝的番茄表面缺陷实时检测方法。采用模型剪枝的方法在YOLOv4网络模型基础上进行模型优化,首先将3个连续检测工位采集的RGB图像拼接生成YOLOv4网络的输入图像,...为解决番茄缺陷检测过程中的精确性和实时性问题,该研究提出一种基于模型剪枝的番茄表面缺陷实时检测方法。采用模型剪枝的方法在YOLOv4网络模型基础上进行模型优化,首先将3个连续检测工位采集的RGB图像拼接生成YOLOv4网络的输入图像,然后采用通道剪枝和层剪枝的方法压缩YOLOv4网络模型,从而减少模型参数,提高检测速度,最后提出一种基于L1范数的非极大值抑制方法,用于在模型微调后去除冗余预测框,从而精准定位图像中的缺陷位置,并将模型部署到分级系统上进行实时检测试验。结果表明,该研究提出的YOLOv4P网络与原YOLOv4网络相比,网络模型尺寸和推理时间分别减少了232.40 MB和10.11 ms,平均精度均值(Mean Average Precision,mAP)从92.45%提高到94.56%,能满足实际生产中针对缺陷番茄进行精准、实时检测的要求,为番茄分级系统提供了高效的实时检测方法。展开更多
春见柑橘个体小、单株果树柑橘密集、柑橘之间的形态与颜色相似度高且易被树叶严重遮挡,这些特点给春见柑橘检测与计数带来了较大困难。该研究以实际春见果园环境中的春见柑橘作为检测与计数对象,提出了一种以春见柑橘为检测目标的基于...春见柑橘个体小、单株果树柑橘密集、柑橘之间的形态与颜色相似度高且易被树叶严重遮挡,这些特点给春见柑橘检测与计数带来了较大困难。该研究以实际春见果园环境中的春见柑橘作为检测与计数对象,提出了一种以春见柑橘为检测目标的基于特征递归融合YOLOv4网络模型(YOLOv4 network model based on recursive fusion of features,FR-YOLOv4)。针对春见柑橘尺寸小的特点,FR-YOLOv4网络模型的主干特征提取网络采用了感受野更小的CSPResNest50网络,降低了小尺寸目标的特征图传不到目标检测器中的可能性;针对春见柑橘被遮挡和密集分布的情况,采用了递归特征金字塔(Recursive Feature Pyramid,RFP)网络来进行特征递归融合,提高了对果园环境下春见柑橘的检测精度。试验结果表明:FR-YOLOv4网络模型对于果园环境中春见柑橘的平均检测精度为94.6%,视频检测帧率为51帧/s。FR-YOLOv4网络模型相比于YOLOv4、单次多框检测器(Single Shot Multi-Box Detector,SSD)、CenterNet和更快速卷积神经网络(Faster-Region-Convolutional Neural Networks,Faster R-CNN)的平均检测精度分别提高了8.9、29.3、14.1和16.2个百分点,视频检测帧率分别比SSD、Faster R-CNN提高了17和33帧/s。FR-YOLOv4网络模型对于实际果园环境中春见柑橘的检测精度高,具备检测实时性,适用于春见果园中春见柑橘检测与计数。展开更多
文摘为实现田间环境下对玉米苗和杂草的高精度实时检测,本文提出一种融合带色彩恢复的多尺度视网膜(Multi-scale retinex with color restoration,MSRCR)增强算法的改进YOLOv4tiny模型。首先,针对田间环境的图像特点采用MSRCR算法进行图像特征增强预处理,提高图像的对比度和细节质量;然后使用Mosaic在线数据增强方式,丰富目标检测背景,提高训练效率和小目标的检测精度;最后对YOLOv4tiny模型使用K-means++聚类算法进行先验框聚类分析和通道剪枝处理。改进和简化后的模型总参数量降低了45.3%,模型占用内存减少了45.8%,平均精度均值(Mean average precision,mAP)提高了2.5个百分点,在Jetson Nano嵌入式平台上平均检测帧耗时减少了22.4%。本文提出的PruneYOLOv4tiny模型与Faster RCNN、YOLOv3tiny、YOLOv43种常用的目标检测模型进行比较,结果表明:PruneYOLOv4tiny的mAP为96.6%,分别比Faster RCNN和YOLOv3tiny高22.1个百分点和3.6个百分点,比YOLOv4低1.2个百分点;模型占用内存为12.2 MB,是Faster RCNN的3.4%,YOLOv3tiny的36.9%,YOLOv4的5%;在Jetson Nano嵌入式平台上平均检测帧耗时为131 ms,分别是YOLOv3tiny和YOLOv4模型的32.1%和7.6%。可知本文提出的优化方法在模型占用内存、检测耗时和检测精度等方面优于其他常用目标检测算法,能够为硬件资源有限的田间精准除草的系统提供可行的实时杂草识别方法。
文摘一种基于YOLOv4(you only look once version 4)模型的交通路标识别方案,可用于解决交通管理领域中的交通路标识别问题。其主要是采用YOLOv4模型作为基础架构,利用深度学习和图像处理技术,结合深度卷积神经网络和目标检测算法,高效、快速地进行交通路标的准确识别。经过多个公开的交通路标检测数据集进行了严格的测试和性能进行比较、验证,在不同类型的交通路标上取得了优异的检测和识别性能,具有高的准确率和召回率。
文摘为解决番茄缺陷检测过程中的精确性和实时性问题,该研究提出一种基于模型剪枝的番茄表面缺陷实时检测方法。采用模型剪枝的方法在YOLOv4网络模型基础上进行模型优化,首先将3个连续检测工位采集的RGB图像拼接生成YOLOv4网络的输入图像,然后采用通道剪枝和层剪枝的方法压缩YOLOv4网络模型,从而减少模型参数,提高检测速度,最后提出一种基于L1范数的非极大值抑制方法,用于在模型微调后去除冗余预测框,从而精准定位图像中的缺陷位置,并将模型部署到分级系统上进行实时检测试验。结果表明,该研究提出的YOLOv4P网络与原YOLOv4网络相比,网络模型尺寸和推理时间分别减少了232.40 MB和10.11 ms,平均精度均值(Mean Average Precision,mAP)从92.45%提高到94.56%,能满足实际生产中针对缺陷番茄进行精准、实时检测的要求,为番茄分级系统提供了高效的实时检测方法。
文摘春见柑橘个体小、单株果树柑橘密集、柑橘之间的形态与颜色相似度高且易被树叶严重遮挡,这些特点给春见柑橘检测与计数带来了较大困难。该研究以实际春见果园环境中的春见柑橘作为检测与计数对象,提出了一种以春见柑橘为检测目标的基于特征递归融合YOLOv4网络模型(YOLOv4 network model based on recursive fusion of features,FR-YOLOv4)。针对春见柑橘尺寸小的特点,FR-YOLOv4网络模型的主干特征提取网络采用了感受野更小的CSPResNest50网络,降低了小尺寸目标的特征图传不到目标检测器中的可能性;针对春见柑橘被遮挡和密集分布的情况,采用了递归特征金字塔(Recursive Feature Pyramid,RFP)网络来进行特征递归融合,提高了对果园环境下春见柑橘的检测精度。试验结果表明:FR-YOLOv4网络模型对于果园环境中春见柑橘的平均检测精度为94.6%,视频检测帧率为51帧/s。FR-YOLOv4网络模型相比于YOLOv4、单次多框检测器(Single Shot Multi-Box Detector,SSD)、CenterNet和更快速卷积神经网络(Faster-Region-Convolutional Neural Networks,Faster R-CNN)的平均检测精度分别提高了8.9、29.3、14.1和16.2个百分点,视频检测帧率分别比SSD、Faster R-CNN提高了17和33帧/s。FR-YOLOv4网络模型对于实际果园环境中春见柑橘的检测精度高,具备检测实时性,适用于春见果园中春见柑橘检测与计数。