期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于注意力机制改进的轻量级目标检测算法
被引量:
2
1
作者
金梅
李义辉
+1 位作者
张立国
马子荐
《激光与光电子学进展》
CSCD
北大核心
2023年第4期375-382,共8页
针对通用的目标检测算法在检测生活场景下的多类目标时检测精度低、速度较慢的问题,提出了一种基于注意力机制改进的轻量级目标检测算法YOLOv4s。该算法以CSPDarknet53-s作为主干特征提取网络提取图像特征,通过注意力模块进行特征选择,...
针对通用的目标检测算法在检测生活场景下的多类目标时检测精度低、速度较慢的问题,提出了一种基于注意力机制改进的轻量级目标检测算法YOLOv4s。该算法以CSPDarknet53-s作为主干特征提取网络提取图像特征,通过注意力模块进行特征选择,再利用特征金字塔网络对特征进行融合,最后通过检测头分别处理特征融合后的两个输出,进而提高对生活场景下多类目标检测的能力。实验结果表明:相比改进前的算法,YOLOv4s算法在PASCAL VOC数据集上的平均均值精度(mAP)及MS COCO数据集上的平均精度(AP)都有一定程度的提升;相较于轻量级算法Efficientdet,YOLOv4s算法在MS COCO数据集上的AP也有一定提高,并且实现了有效的显著目标检测。
展开更多
关键词
机器视觉
目标检测
轻量级神经网络
注意力机制
特征金字塔
yolov4s
原文传递
题名
基于注意力机制改进的轻量级目标检测算法
被引量:
2
1
作者
金梅
李义辉
张立国
马子荐
机构
燕山大学电气工程学院
出处
《激光与光电子学进展》
CSCD
北大核心
2023年第4期375-382,共8页
基金
河北省科学技术研究与发展计划科技支撑计划(20310302D)
河北省中央引导地方专项(199477141G)。
文摘
针对通用的目标检测算法在检测生活场景下的多类目标时检测精度低、速度较慢的问题,提出了一种基于注意力机制改进的轻量级目标检测算法YOLOv4s。该算法以CSPDarknet53-s作为主干特征提取网络提取图像特征,通过注意力模块进行特征选择,再利用特征金字塔网络对特征进行融合,最后通过检测头分别处理特征融合后的两个输出,进而提高对生活场景下多类目标检测的能力。实验结果表明:相比改进前的算法,YOLOv4s算法在PASCAL VOC数据集上的平均均值精度(mAP)及MS COCO数据集上的平均精度(AP)都有一定程度的提升;相较于轻量级算法Efficientdet,YOLOv4s算法在MS COCO数据集上的AP也有一定提高,并且实现了有效的显著目标检测。
关键词
机器视觉
目标检测
轻量级神经网络
注意力机制
特征金字塔
yolov4s
Keywords
machine vision
object detection
lightweight neural network
attention mechanism
feature pyramid
yolov4s
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于注意力机制改进的轻量级目标检测算法
金梅
李义辉
张立国
马子荐
《激光与光电子学进展》
CSCD
北大核心
2023
2
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部