[目的]本文旨在解决在自然环境下不同成熟度苹果目标检测精度较低的问题。[方法]提出了一种改进的YOLOv5s模型SODSTR-YOLOv5s(YOLOv5s with small detection layer and omni-dimensional dynamic convolution and swin transformer bloc...[目的]本文旨在解决在自然环境下不同成熟度苹果目标检测精度较低的问题。[方法]提出了一种改进的YOLOv5s模型SODSTR-YOLOv5s(YOLOv5s with small detection layer and omni-dimensional dynamic convolution and swin transformer block),用于不同成熟度苹果检测。首先改进YOLOv5s的多尺度目标检测层,在Prediction中构建检测160×160特征图的检测头,提高小尺寸的不同成熟度苹果的检测精度;其次在Backbone结构中融合Swin Transformer Block,加强同级成熟度的苹果纹理特征融合,弱化纹理特征分布差异带来的消极影响,提高模型泛化能力;最后将Neck结构的Conv模块替换为动态卷积模块ODConv,细化局部特征映射,实现局部苹果细粒度特征的充分提取。基于不同成熟度苹果数据集进行试验,验证改进模型的性能。[结果]改进模型SODSTR-YOLOv5s检测的精确率、召回率、平均精度均值分别为89.1%、95.5%、93.6%,高、中、低成熟度苹果平均精度均值分别为94.1%、93.1%、93.7%,平均检测时间为16 ms,参数量为7.34 M。相比于YOLOv5s模型,改进模型SODSTR-YOLOv5s精确率、召回率、平均精度均值分别提高了3.8%、5.0%、2.9%,参数量和平均检测时间分别增加了0.32 M和5 ms。[结论]改进模型SODSTR-YOLOv5s提升了在自然环境下对不同成熟度苹果的检测能力,能较好地满足实际采摘苹果的检测要求。展开更多
坑洼是一种常见的路面病害,会降低行车安全,准确快速地检测路面坑洼较为重要。针对现有坑洼检测方法在小目标和密集目标的场景下检测精度不高的问题,文中提出了一种改进YOLOv5(You Only Look Once version 5)模型。在YOLOv5的主干网络...坑洼是一种常见的路面病害,会降低行车安全,准确快速地检测路面坑洼较为重要。针对现有坑洼检测方法在小目标和密集目标的场景下检测精度不高的问题,文中提出了一种改进YOLOv5(You Only Look Once version 5)模型。在YOLOv5的主干网络中引入CBAM(Convolutional Block Attention Module)来提高模型对关键特征的注意能力,将YOLOv5的损失函数改为EIoU(Efficient Intersection over Union)来提高模型对目标的检测精度。实验结果表明,所提模型能够在小目标和密集目标的场景下快速准确地检测路面坑洼,在开源数据集Annotated Potholes Image Dataset中的mAP(mean Average Precision)达到了82%,较较于YOLOv5和其他主流方法也有所提高。展开更多
文摘[目的]本文旨在解决在自然环境下不同成熟度苹果目标检测精度较低的问题。[方法]提出了一种改进的YOLOv5s模型SODSTR-YOLOv5s(YOLOv5s with small detection layer and omni-dimensional dynamic convolution and swin transformer block),用于不同成熟度苹果检测。首先改进YOLOv5s的多尺度目标检测层,在Prediction中构建检测160×160特征图的检测头,提高小尺寸的不同成熟度苹果的检测精度;其次在Backbone结构中融合Swin Transformer Block,加强同级成熟度的苹果纹理特征融合,弱化纹理特征分布差异带来的消极影响,提高模型泛化能力;最后将Neck结构的Conv模块替换为动态卷积模块ODConv,细化局部特征映射,实现局部苹果细粒度特征的充分提取。基于不同成熟度苹果数据集进行试验,验证改进模型的性能。[结果]改进模型SODSTR-YOLOv5s检测的精确率、召回率、平均精度均值分别为89.1%、95.5%、93.6%,高、中、低成熟度苹果平均精度均值分别为94.1%、93.1%、93.7%,平均检测时间为16 ms,参数量为7.34 M。相比于YOLOv5s模型,改进模型SODSTR-YOLOv5s精确率、召回率、平均精度均值分别提高了3.8%、5.0%、2.9%,参数量和平均检测时间分别增加了0.32 M和5 ms。[结论]改进模型SODSTR-YOLOv5s提升了在自然环境下对不同成熟度苹果的检测能力,能较好地满足实际采摘苹果的检测要求。
文摘坑洼是一种常见的路面病害,会降低行车安全,准确快速地检测路面坑洼较为重要。针对现有坑洼检测方法在小目标和密集目标的场景下检测精度不高的问题,文中提出了一种改进YOLOv5(You Only Look Once version 5)模型。在YOLOv5的主干网络中引入CBAM(Convolutional Block Attention Module)来提高模型对关键特征的注意能力,将YOLOv5的损失函数改为EIoU(Efficient Intersection over Union)来提高模型对目标的检测精度。实验结果表明,所提模型能够在小目标和密集目标的场景下快速准确地检测路面坑洼,在开源数据集Annotated Potholes Image Dataset中的mAP(mean Average Precision)达到了82%,较较于YOLOv5和其他主流方法也有所提高。