针对YOLOv5(you only look once version five)模型在农作物害虫密集目标上的检测效果无法满足实际需求,以及训练过程中模型收敛速度较慢等问题,该研究提出了融入全局响应归一化(global response normalization,GRN)注意力机制的YOLOv5...针对YOLOv5(you only look once version five)模型在农作物害虫密集目标上的检测效果无法满足实际需求,以及训练过程中模型收敛速度较慢等问题,该研究提出了融入全局响应归一化(global response normalization,GRN)注意力机制的YOLOv5农作物害虫识别模型(YOLOv5-GRNS)。设计了融入GRN注意力机制的编码器(convolution three,C3)模块,提高对密集目标的识别精度;利用形状交并比(shape intersection over union,SIoU)损失函数提高模型收敛速度和识别精度;在公开数据集IP102(insect pests 102)的基础上,筛选出危害陕西省主要农作物的8种害虫类型,构建了新数据集IP8-CW(insect pests eight for corn and wheat)。改进后的模型在新IP8-CW和完整的IP102两种数据集上进行了全面验证。对于IP8-CW,全类别平均准确率(mean average precision,mAP)mAP@.5和mAP@.5:.95分别达到了72.3%和47.0%。该研究还对YOLOv5-GRNS模型进行了类激活图分析,不仅从识别精度,而且从可解释性的角度,验证了对农作物害虫、尤其是密集目标的优秀识别效果。此外,模型还兼具参数量少、运算量低的优势,具有良好的嵌入式设备应用前景。展开更多
水下目标物的准确识别是保障通航安全的一项重要工作,针对现有算法对水下多类别目标存在识别精度不高的问题,本文在YOLOv5s(You Only Look Once v5s)的基础上提出对其进行改进。首先,为平衡样本间的数量,通过利用几何变化操作模拟现实...水下目标物的准确识别是保障通航安全的一项重要工作,针对现有算法对水下多类别目标存在识别精度不高的问题,本文在YOLOv5s(You Only Look Once v5s)的基础上提出对其进行改进。首先,为平衡样本间的数量,通过利用几何变化操作模拟现实发生的情况对数量较少的样本进行扩充;其次,将YOLOv5s中传统损失函数CIoU惩罚项中的反正切函数改为Sigmoid函数,加快目标识别模型的收敛速度;最后,融合坐标注意力机制(Coordinate Attention,CA),融合后的模型能衡量每个通道信息的重要性,在关注目标位置信息的同时也不增加过多的计算量。试验结果表明:本文所提出的改进的YOLOv5s较改进前在准确率上提升了4.97%,在召回率上提高了6.20%,在类平均精度上提升了4.98%,证明本文改进的方法在工程应用上的价值。展开更多
文摘针对YOLOv5(you only look once version five)模型在农作物害虫密集目标上的检测效果无法满足实际需求,以及训练过程中模型收敛速度较慢等问题,该研究提出了融入全局响应归一化(global response normalization,GRN)注意力机制的YOLOv5农作物害虫识别模型(YOLOv5-GRNS)。设计了融入GRN注意力机制的编码器(convolution three,C3)模块,提高对密集目标的识别精度;利用形状交并比(shape intersection over union,SIoU)损失函数提高模型收敛速度和识别精度;在公开数据集IP102(insect pests 102)的基础上,筛选出危害陕西省主要农作物的8种害虫类型,构建了新数据集IP8-CW(insect pests eight for corn and wheat)。改进后的模型在新IP8-CW和完整的IP102两种数据集上进行了全面验证。对于IP8-CW,全类别平均准确率(mean average precision,mAP)mAP@.5和mAP@.5:.95分别达到了72.3%和47.0%。该研究还对YOLOv5-GRNS模型进行了类激活图分析,不仅从识别精度,而且从可解释性的角度,验证了对农作物害虫、尤其是密集目标的优秀识别效果。此外,模型还兼具参数量少、运算量低的优势,具有良好的嵌入式设备应用前景。
文摘水下目标物的准确识别是保障通航安全的一项重要工作,针对现有算法对水下多类别目标存在识别精度不高的问题,本文在YOLOv5s(You Only Look Once v5s)的基础上提出对其进行改进。首先,为平衡样本间的数量,通过利用几何变化操作模拟现实发生的情况对数量较少的样本进行扩充;其次,将YOLOv5s中传统损失函数CIoU惩罚项中的反正切函数改为Sigmoid函数,加快目标识别模型的收敛速度;最后,融合坐标注意力机制(Coordinate Attention,CA),融合后的模型能衡量每个通道信息的重要性,在关注目标位置信息的同时也不增加过多的计算量。试验结果表明:本文所提出的改进的YOLOv5s较改进前在准确率上提升了4.97%,在召回率上提高了6.20%,在类平均精度上提升了4.98%,证明本文改进的方法在工程应用上的价值。