期刊文献+
共找到631篇文章
< 1 2 32 >
每页显示 20 50 100
铁路轨道伤损检测系统YOLOv5s算法模型优化研究(下)
1
作者 程晗 辜刚 +3 位作者 邴丽红 韩兵 章罕 随海亮 《铁道技术监督》 2024年第9期36-38,43,共4页
在介绍轨道伤损检测系统组成的基础上,分析YOLOv5s算法模型原理,针对采用YOLOv5s算法模型检测钢轨轨面掉块和夹板裂纹等小目标伤损效果不佳的问题,通过数据增强策略和算法模型改进来优化YOLOv5s算法,并进行试验和现场应用验证。结果表明... 在介绍轨道伤损检测系统组成的基础上,分析YOLOv5s算法模型原理,针对采用YOLOv5s算法模型检测钢轨轨面掉块和夹板裂纹等小目标伤损效果不佳的问题,通过数据增强策略和算法模型改进来优化YOLOv5s算法,并进行试验和现场应用验证。结果表明:改进后的YOLOv5s算法模型平均精确率提升7.7%,检测速度增加5.7帧/秒,使轨道伤损检测系统能有效检测出钢轨轨面掉块、夹板裂纹等细小伤损。YOLOv5s算法模型的优化,为轨道伤损检测系统准确检测钢轨轨面掉块和夹板裂纹等小目标伤损提供理论依据。 展开更多
关键词 铁路轨道 伤损检测 检测系统 yolov5s算法
下载PDF
铁路轨道伤损检测系统YOLOv5s算法模型优化研究(上)
2
作者 程晗 辜刚 +3 位作者 邴丽红 韩兵 章罕 随海亮 《铁道技术监督》 2024年第8期27-33,共7页
在介绍轨道伤损检测系统组成的基础上,分析YOLOv5s算法模型原理,针对采用YOLOv5s算法模型检测钢轨轨面掉块和夹板裂纹等小目标伤损效果不佳的问题,通过数据增强策略和算法模型改进来优化YOLOv5s算法,并进行试验和现场应用验证。结果表明... 在介绍轨道伤损检测系统组成的基础上,分析YOLOv5s算法模型原理,针对采用YOLOv5s算法模型检测钢轨轨面掉块和夹板裂纹等小目标伤损效果不佳的问题,通过数据增强策略和算法模型改进来优化YOLOv5s算法,并进行试验和现场应用验证。结果表明:改进后的YOLOv5s算法模型平均精确率提升7.7%,检测速度增加5.7帧/秒,使轨道伤损检测系统能有效检测出钢轨轨面掉块、夹板裂纹等细小伤损。YOLOv5s算法模型的优化,为轨道伤损检测系统准确检测钢轨轨面掉块和夹板裂纹等小目标伤损提供理论依据。 展开更多
关键词 铁路轨道 伤损检测 检测系统 yolov5s算法
下载PDF
基于改进YOLOv5s的小目标检测算法 被引量:7
3
作者 贵向泉 秦庆松 孔令旺 《计算机工程与设计》 北大核心 2024年第4期1134-1140,共7页
针对当前主流目标检测算法对图像中远距离小目标产生的漏检、误检等问题,提出一种改进YOLOv5s的小目标检测算法。在模型训练过程中,通过引入Focal-EIOU定位损失函数,加强边界框的定位精度;在骨干网络中,通过添加小目标检测层,提高小目... 针对当前主流目标检测算法对图像中远距离小目标产生的漏检、误检等问题,提出一种改进YOLOv5s的小目标检测算法。在模型训练过程中,通过引入Focal-EIOU定位损失函数,加强边界框的定位精度;在骨干网络中,通过添加小目标检测层,提高小目标的检测精度;在Neck结构中,通过优化上采样算子和添加注意力机制,加强小目标的特征信息。实验结果表明,改进后的算法在VisDrone数据集上与YOLOv5s算法相比,mAP@small提高了3.2%,且检测速度满足实时性的要求,能够很好地应用于小目标检测任务中。 展开更多
关键词 yolov5s算法 小目标检测 损失函数 上采样算子 骨干网络 注意力机制 特征信息
下载PDF
基于改进YOLOv5s的着装不规范检测算法研究 被引量:2
4
作者 李跃华 仲新 +1 位作者 姚章燕 胡彬 《图学学报》 CSCD 北大核心 2024年第3期433-445,共13页
针对餐饮后厨工作人员着装不规范,在复杂背景下采用现有算法检测精度低且易出现误检、漏检等问题,提出一种基于YOLOv5s的着装规范检测改进算法YOLOv5s-ESW。首先,在主干网络引入新型多尺度注意力机制改进C3模块,增强网络的特征提取能力... 针对餐饮后厨工作人员着装不规范,在复杂背景下采用现有算法检测精度低且易出现误检、漏检等问题,提出一种基于YOLOv5s的着装规范检测改进算法YOLOv5s-ESW。首先,在主干网络引入新型多尺度注意力机制改进C3模块,增强网络的特征提取能力;其次,在颈部网络中采用空间和通道重建卷积模块(SCConv)替换原始网络中的卷积模块(Conv),减少模型参数冗余,同时提升模型的精度;最后,在预测部分引入WIoU损失函数更换CIoU损失函数,提高模型泛化能力,加快收敛速度。将改进算法应用到自建餐饮后厨工作人员着装数据集中进行实验,实验表明,改进后的模型检测平均精度提升了4.1%,参数量减少了11.4%。该模型在提高了检测精度的同时降低了网络复杂度,能够满足餐饮后厨工作人员的着装规范检测的要求。 展开更多
关键词 着装规范检测 注意力机制 卷积 损失函数 yolov5s-ESW算法
下载PDF
基于改进YOLOv5s的道路裂缝检测算法 被引量:2
5
作者 任安虎 姜子渊 马晨浩 《激光杂志》 CAS 北大核心 2024年第4期88-94,共7页
为了解决道路巡检系统光学传感器采集的裂缝图像中颜色特征不明显且尺寸不规则造成检测精度不高、泛化能力不足的问题,提出改进YOLOv5s的裂缝检测算法。将结合深度可分离卷积(Depthwise Separable Convolution, DSC)的全局注意力(Global... 为了解决道路巡检系统光学传感器采集的裂缝图像中颜色特征不明显且尺寸不规则造成检测精度不高、泛化能力不足的问题,提出改进YOLOv5s的裂缝检测算法。将结合深度可分离卷积(Depthwise Separable Convolution, DSC)的全局注意力(Global Attention Mechanism, GAM)引入主干特征提取网络,在降低注意力复杂度的同时获得丰富的跨维度特征,增强了裂缝的识别能力;采用空间金字塔软池化网络(Spatial Pyramid Softpool, SPSF),通过Softpool池化保留多维语义以减少信息弥散,提高了边界框回归的准确性;在颈部特征增强网络,运用空洞深度可分离卷积(Atrous DSC)进行下采样,通过扩大感受野加强深层和浅层信息的聚合能力,提高裂缝识别的泛化性。经过在自制道路裂缝数据集上的实验,相较于YOLOv5s,改进算法的mAP提高2.2%,有效提升了道路裂缝检测的准确性和对不同背景下裂缝识别的泛化能力。 展开更多
关键词 道路裂缝检测 yolov5s算法 全局注意力机制 深度可分离卷积 Softpool池化
下载PDF
基于YOLOv5的茶叶嫩芽图像识别算法研究 被引量:1
6
作者 马志艳 李辉 《湖北工业大学学报》 2024年第1期36-40,共5页
现有的机器采茶都需要人工辅助进行采茶,且存在老叶、嫩芽一刀切的情况,会损害一部分茶叶,只适用于低端茶叶的采摘。因此,需要研究出一种精准高效的茶叶嫩芽识别方法。针对茶叶嫩芽图像背景复杂的问题,在YOLOv5算法的基础上,对算法进行... 现有的机器采茶都需要人工辅助进行采茶,且存在老叶、嫩芽一刀切的情况,会损害一部分茶叶,只适用于低端茶叶的采摘。因此,需要研究出一种精准高效的茶叶嫩芽识别方法。针对茶叶嫩芽图像背景复杂的问题,在YOLOv5算法的基础上,对算法进行多角度的改进,实验结果表明,改进算法的模型的mAP提升了4.1%,Recall提升了4.0%,且改进方法减少了漏检情况的发生。 展开更多
关键词 茶叶采摘 yolov5算法 机器学习 嫩芽识别
下载PDF
基于改进YOLOv5s的面向自动驾驶场景的道路目标检测算法 被引量:2
7
作者 胡丹丹 张忠婷 《智能系统学报》 CSCD 北大核心 2024年第3期653-660,共8页
在复杂道路场景中检测车辆、行人、自行车等目标时,存在因多尺度目标及部分遮挡易造成漏检及误检等情况,提出一种基于改进YOLOv5s的面向自动驾驶场景的道路目标检测算法。首先,利用深度可分离卷积替换部分普通卷积,减少模型的参数量以... 在复杂道路场景中检测车辆、行人、自行车等目标时,存在因多尺度目标及部分遮挡易造成漏检及误检等情况,提出一种基于改进YOLOv5s的面向自动驾驶场景的道路目标检测算法。首先,利用深度可分离卷积替换部分普通卷积,减少模型的参数量以提升检测速度。其次,在特征融合网络中引入基于感受野模块(receptive field block,RFB)改进的RFB-s,通过模仿人类视觉感知,增强特征图的有效感受野区域,提高网络特征表达能力及对目标特征的可辨识性。最后,使用自适应空间特征融合(adaptively spatial feature fusion,ASFF)方式以提升PANet对多尺度特征融合的效果。实验结果表明,在PASCAL VOC数据集上,所提算法检测平均精度均值相较于YOLOv5s提高1.71个百分点,达到84.01%,在满足自动驾驶汽车实时性要求的前提下,在一定程度上减少目标检测时的误检及漏检情况,有效提升模型在复杂驾驶场景下的检测性能。 展开更多
关键词 yolov5s 自动驾驶 目标检测算法 深度可分离卷积 感受野模块 自适应空间特征融合 PANet 多尺度特征融合
下载PDF
基于改进YOLOv5s的仓储货物检测算法研究
8
作者 王影 王晨 +1 位作者 贾永涛 刘麒 《吉林化工学院学报》 CAS 2024年第1期51-58,共8页
针对目前仓储货物分类速度慢、易出错、灵活性差等问题,提出了一种改进YOLOv5s的货物检测算法,对仓储货物进行预分类。首先,根据仓储货物的外形特征,将其分为包装箱与包装袋两大类,形成训练数据集;其次,将骨干网络更换为具有更小模型尺... 针对目前仓储货物分类速度慢、易出错、灵活性差等问题,提出了一种改进YOLOv5s的货物检测算法,对仓储货物进行预分类。首先,根据仓储货物的外形特征,将其分为包装箱与包装袋两大类,形成训练数据集;其次,将骨干网络更换为具有更小模型尺寸的MobileNetV3,加快推理;再次,添加SE注意力机制模块,旨在提高模型的检测精度;最后,结合α_CIoU损失函数,增强模型的灵活度。通过实验验证,改进后的算法相较于原始算法在精确率(Precision,P)、平均类别精度(mean Average precision,mAP)和帧率(Frames per second,FPS)三方面分别提升2.1%、0.5%和10.6%,能够高效地完成对仓储货物的预分类工作。 展开更多
关键词 yolov5s 仓储货物 检测算法 预分类
下载PDF
基于改进YOLOv5算法的无人机巡检图像智能识别方法
9
作者 侯伟 陈雅 +1 位作者 宋承继 刘强锋 《微型电脑应用》 2024年第9期26-30,36,共6页
提出一种基于改进YOLOv5算法的无人机巡检图像智能识别方法。该方法构建无人机巡检图像的相邻图像独立坐标系,并利用相对定向法确定图像中共同目标的位置关系。将巡检目标统一转换至同一坐标系下,采用先进的分割技术提取目标纹理特征向... 提出一种基于改进YOLOv5算法的无人机巡检图像智能识别方法。该方法构建无人机巡检图像的相邻图像独立坐标系,并利用相对定向法确定图像中共同目标的位置关系。将巡检目标统一转换至同一坐标系下,采用先进的分割技术提取目标纹理特征向量,为后续的图像识别提供了有力支持。在改进YOLOv5算法的过程中,特别注重多尺度网络的选择与融合激活函数及损失函数的优化组合。采用大疆无人机获取建筑裂缝巡检图像进行实验。结果表明,该方法能够在高效率下实现不同类型建筑裂缝的高精度识别,展现出优异的稳定性能。这一研究成果为无人机巡检图像的智能识别提供了新的思路和方法,具有广泛的应用前景和实际价值。 展开更多
关键词 无人机 巡检图像 yolov5算法 多尺度网络 智能识别
下载PDF
基于改进YOLOv5算法的织物缺陷检测
10
作者 林桂娟 王宇 +1 位作者 刘珂宇 李子涵 《棉纺织技术》 CAS 2024年第10期33-41,共9页
基于现有织物缺陷检测算法受疵点尺寸与织物纹理背景的影响导致检测精度较低,同时检测模型过于复杂,难以部署到工控设备上,无法满足织物缺陷实时检测等现状,提出一种改进YOLOv5算法的织物缺陷检测算法。以YOLOv5算法为基准模型,采用跨... 基于现有织物缺陷检测算法受疵点尺寸与织物纹理背景的影响导致检测精度较低,同时检测模型过于复杂,难以部署到工控设备上,无法满足织物缺陷实时检测等现状,提出一种改进YOLOv5算法的织物缺陷检测算法。以YOLOv5算法为基准模型,采用跨阶段部分连接残差网络替代原模型的主干网络,增强模型上下文特征信息学习能力;将SimAM注意力机制融入到模型中,提升对有用特征的提取能力,抑制无用纹理背景特征的干扰;引入WIoU与Varifocal Loss损失函数,提高回归框准确性的同时降低负样本权重;最后,针对织物的小目标疵点难以检测的问题,提出增加小目标检测层的方法,提高模型的检测能力。试验结果表明:该研究算法能够快速准确地检测织物疵点,精确率与mAP分别达到86.46%与84.4%,与基准模型相比,分别提高6.16个百分点和5.8个百分点。 展开更多
关键词 织物缺陷检测 yolov5模型 SimAM WIoU CSPResNet
下载PDF
基于改进YOLOv5s算法的禁捕期长江渔船识别及应用研究
11
作者 崔秀芳 王认认 +2 位作者 林浩涛 夏霖波 韩沛霖 《海洋渔业》 CSCD 北大核心 2024年第3期371-380,共10页
长江实行十年禁渔是长江生态环境修复的关键环节,针对禁渔期间长江非法捕捞渔船目标小、背景复杂、流动大等问题,提出了一种基于改进YOLOv5s的目标检测算法。该算法优化多尺度自适应锚框模块,采用改进的K-means++聚类算法,重新匹配适合... 长江实行十年禁渔是长江生态环境修复的关键环节,针对禁渔期间长江非法捕捞渔船目标小、背景复杂、流动大等问题,提出了一种基于改进YOLOv5s的目标检测算法。该算法优化多尺度自适应锚框模块,采用改进的K-means++聚类算法,重新匹配适合长江船舶尺寸的锚框;使用轻量高效的坐标注意力(coordinate attention,CA)机制,提升模型关注目标通道信息特征的能力;采用SPPCSPPC(spatial pyramid pooling and context-aware spatial pyramid pooling combination)对特征图进行池化,提高小目标检测能力;通过构建长江船舶数据集训练得到最优权值模型。结果显示,改进后的模型在准确率、召回率、mAP0.5、mAP0.5∶0.9和原模型相比分别提高了1.5%、3.0%、2.4%、7.7%,且训练过程损失收敛更快,收敛值更低,能够准确快速识别出长江上的渔船目标。研究结果可为长江十年禁渔提供技术支持。 展开更多
关键词 目标检测 yolov5s 聚类算法 注意力机制 空间金字塔池化
下载PDF
基于改进Yolov5模型的纱筒余纱量检测方法
12
作者 史伟民 李洲 +2 位作者 陆伟健 屠佳佳 徐寅哲 《纺织学报》 EI CAS CSCD 北大核心 2024年第7期196-203,共8页
为实现针织圆纬机纱架上纱筒余纱量的实时检测,提出一种深度学习与传统图像处理相结合的检测方法。通过优化Yolov5的主干网络并加入Shuffle-Attention注意力机制,利用改进后模型在图像中检测并框出纱筒位置;然后利用透视变换、均值偏移... 为实现针织圆纬机纱架上纱筒余纱量的实时检测,提出一种深度学习与传统图像处理相结合的检测方法。通过优化Yolov5的主干网络并加入Shuffle-Attention注意力机制,利用改进后模型在图像中检测并框出纱筒位置;然后利用透视变换、均值偏移、canny轮廓检测、闭操作等处理获取纱筒内外圆轮廓,设计基于梯度下降的圆拟合算法,拟合纱筒内外圆的轮廓,得到纱筒的内外圆半径;最后结合小孔成像的原理完成纱筒余纱量的测量。结果表明:改进后的Yolov5模型在纱筒检测精度上达到99.5%,检测速度可达20帧/s,同时模型参数减少至3.255×106可检测的最小纱筒余纱量为3 mm,当纱筒余纱量小于3 mm后,将其视为空筒,进行延时更换。本文算法拟合圆所花费时间是传统霍夫圆检测算法的1/4左右,因此可满足针织车间的实际应用需求。 展开更多
关键词 改进yolov5模型 透视变换 均值偏移 梯度下降法 纱筒余纱量 针织圆纬机
下载PDF
基于YOLOv5的零件识别轻量化算法
13
作者 刘想德 马昊 《组合机床与自动化加工技术》 北大核心 2024年第5期100-104,107,共6页
为了解决现有的基于深度学习的零件识别模型参数量过大、检测速度慢、检测精度低的问题,以YOLOv5模型为基础,提出了结合轻量级网络和Transformer的零件识别算法。首先,设计了一种轻量级主干特征提取网络,以减少网络的参数量和计算量,并... 为了解决现有的基于深度学习的零件识别模型参数量过大、检测速度慢、检测精度低的问题,以YOLOv5模型为基础,提出了结合轻量级网络和Transformer的零件识别算法。首先,设计了一种轻量级主干特征提取网络,以减少网络的参数量和计算量,并提升推理速度;其次,将Transformer模块与C3模块融合构成C3TR模块,以增强小目标的检测能力;最后,引入噪音净化模块,通过过滤噪音来提高零件识别模型的准确率。模型的检测平均准确率和平均召回率分别达到了86.7%和85.5%,相较原模型分别提升了和24.2%和17.4%。实验结果表明,改进后的模型在实现模型轻量化的同时,具有更快的检测速度和更高的识别准确率。 展开更多
关键词 零件识别 模型轻量化 yolov5 Transformer模块 噪音净化模块
下载PDF
基于改进YOLOv5s的无人机小目标检测算法研究
14
作者 董华军 王宇栖 《华东交通大学学报》 2024年第4期118-126,共9页
【目的】针对无人机航拍图像中目标尺度多样、背景复杂、小目标密集的特点,提出了基于YOLOv5s的小目标检测算法LM-YOLO。【方法】首先,增加小目标检测头并采用K-DBSCAN聚类算法优化锚框,生成更适合小目标检测的锚框,提高算法对小目标的... 【目的】针对无人机航拍图像中目标尺度多样、背景复杂、小目标密集的特点,提出了基于YOLOv5s的小目标检测算法LM-YOLO。【方法】首先,增加小目标检测头并采用K-DBSCAN聚类算法优化锚框,生成更适合小目标检测的锚框,提高算法对小目标的检测精度;然后,设计更高效的MobileNetV3-CBAM作为特征提取网络,减小网络模型大小;最后,在特征融合网络引入大核选择性注意力机制LSK,增加模型对相似目标的分辨率。【结果】在公开数据集VisDrone2019上的实验结果表明,与基准模型YOLOv5s相比,LM-YOLO对所有目标的平均检测精度提升了7.6%,模型大小压缩了45%。【结论】文章算法可以在降低模型大小的同时保持良好的检测精度。 展开更多
关键词 无人机图像 小目标检测 聚类算法 yolov5s 注意力机制
下载PDF
基于OBE理念的Yolov5算法实例教学研究
15
作者 朱洪浩 曹建磊 +2 位作者 郭城 王娇宇 陶珂 《蚌埠学院学报》 2024年第5期118-122,128,共6页
针对深度学习课程理论知识多、教师讲解困难、学生难于理解的教学实际,重点研究深度学习课程中有关图像处理的最新算法Yolov5的实例教学策略,以提高学生对深度学习课程的学习兴趣,增强学生发现问题并解决问题的能力。本实例讲解了基于OB... 针对深度学习课程理论知识多、教师讲解困难、学生难于理解的教学实际,重点研究深度学习课程中有关图像处理的最新算法Yolov5的实例教学策略,以提高学生对深度学习课程的学习兴趣,增强学生发现问题并解决问题的能力。本实例讲解了基于OBE理念的Yolov5口罩佩戴识别算法,首先进行教学方法阐述与分析;其次进行教学实例的选择和算法的实现讲解;最后通过教学反思和教学评价促进教学质量的提升。 展开更多
关键词 OBE 深度学习 yolov5算法 实例教学
下载PDF
一种光伏组件5参数模型参数求解算法
16
作者 陈栋 《信息化研究》 2024年第1期63-67,共5页
针对目前牛顿-拉夫逊法在求解光伏组件5参数模型特征参数时存在的雅克比矩阵奇异化和参数漂移问题,本文运用Levenberg-Marquardt(LM)算法求解光伏组件5参数模型参数。结合目前两种常用组件实测数据的算例分析,验证了本文所提出的LM方法... 针对目前牛顿-拉夫逊法在求解光伏组件5参数模型特征参数时存在的雅克比矩阵奇异化和参数漂移问题,本文运用Levenberg-Marquardt(LM)算法求解光伏组件5参数模型参数。结合目前两种常用组件实测数据的算例分析,验证了本文所提出的LM方法对不同类型组件具有精度高、收敛速度快、实用性强等优点。 展开更多
关键词 光伏组件 LEVENBERG-MARQUARDT算法 5参数模型 求解算法
下载PDF
基于改进YOLOv5s轻量化模型的红外场景目标检测方法研究 被引量:1
17
作者 刘芷汐 周春桂 +2 位作者 崔俊杰 段捷 岳凯杰 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第3期323-330,共8页
红外技术在防备夜间作战和隐蔽作战中发挥的作用是至关重要的,针对如何平衡红外图像检测精度与轻量化的问题,提出一种基于红外场景下的轻量化目标检测模型M-YOLOv5。该网络模型采用改进的ShuffleBlock模块替换原有的CSP骨干网络。此外,... 红外技术在防备夜间作战和隐蔽作战中发挥的作用是至关重要的,针对如何平衡红外图像检测精度与轻量化的问题,提出一种基于红外场景下的轻量化目标检测模型M-YOLOv5。该网络模型采用改进的ShuffleBlock模块替换原有的CSP骨干网络。此外,应用轻量级上采样算子CARAFE替换原有上采样模块,在C3模块中加入SE注意力机制,降低冗余信息,提高特征的区分性和表征能力,重新设计损失函数,E-IoU作为新的损失函数,加快模型收敛速度。在公开数据集FLIR上进行了实验,实验结果表明:改进之后网络模型的平均检测精度达到73.0%,仅降低2.9个百分点,而M-YOLOv5模型的网络参数数量、理论计算量分别减少40%、39%,模型的推理速度提高52%,满足部署于边缘设备的需求。 展开更多
关键词 红外目标检测 轻量化模型 yolov5s CARAFE 注意力机制 损失函数
下载PDF
基于YOLOv5-TGs的PCB缺陷检测算法研究 被引量:1
18
作者 徐一奇 肖金球 谢翔 《微电子学与计算机》 2024年第10期21-34,共14页
针对目前PCB缺陷检测算法在实际应用中检测精度低等问题,提出基于改进YOLOv5s的PCB缺陷检测算法YOLOv5-TGs。该算法以YOLOv5s算法模型为基础,首先在主干网络中引入Swin Transformer结构,并取代C3模块中的Bottleneck模块,并使用Ghost卷... 针对目前PCB缺陷检测算法在实际应用中检测精度低等问题,提出基于改进YOLOv5s的PCB缺陷检测算法YOLOv5-TGs。该算法以YOLOv5s算法模型为基础,首先在主干网络中引入Swin Transformer结构,并取代C3模块中的Bottleneck模块,并使用Ghost卷积模块替换Conv模块,降低了模型的计算复杂度,实现轻量化,同时增加了其接收域,增强PCB缺陷的小目标的特征表达能力;其次,在颈部网络的C3结构后面添加全局注意力机制,更大程度地保留通道和空间信息,在减少特征信息弥散的情况下放大全局跨纬度的交互特征,提高检测效率。最后用SIoU损失函数来代替原有的CIoU损失函数,通过在损失函数代价中引入方向性,加快模型收敛速度,提高回归精度。本文实验使用的是北京大学实验室公开发布的PCB缺陷数据集,结果表明:改进算法的平均精度均值达到98.2%,精确率达到95.5%;相较于YOLOv5s,改进算法的平均精度均值提升了7.3%,精确率提升了7.5%。 展开更多
关键词 PCB缺陷检测 yolov5s算法 Ghost卷积 SwinTransformer结构 全局注意力机制 SIoU损失
下载PDF
基于YOLOv5的钢材表面缺陷检测算法 被引量:1
19
作者 徐明升 祝俊辉 +4 位作者 干家欣 侯津津 王圆 周贤勇 陈琳 《无线电工程》 2024年第2期351-359,共9页
针对目前钢材表面缺陷检测方法存在检测精度不高,易出现误检、漏检等问题,提出一种改进YOLOv5的钢材表面缺陷检测算法。在主干网络中引入坐标注意力(Coordinate Attention,CA)机制模块,提升模型关注钢材表面缺陷的能力,使用GhostBottlen... 针对目前钢材表面缺陷检测方法存在检测精度不高,易出现误检、漏检等问题,提出一种改进YOLOv5的钢材表面缺陷检测算法。在主干网络中引入坐标注意力(Coordinate Attention,CA)机制模块,提升模型关注钢材表面缺陷的能力,使用GhostBottleneck结构与主干网络中的部分卷积模块和C3模块进行替换,构建轻量化模型;在Neck层采用双向特征金字塔网络(Bidirectional Feature Pyramid Network,BiFPN)结构来提升检测效果;增加一个目标检测层来解决数据集中部分缺陷占比较大的问题。实验结果表明,改进的YOLOv5s-GCBD(GhostBottleneck-CA-BiFPN-Anchor)算法在NEU-DET数据集上的平均精度均值(mean Average Precision,mAP)达到80.2%,较原YOLOv5s算法提高了3.5%。相比传统的钢材表面缺陷检测方法,提出的算法实现了更精准的钢材表面缺陷检测。 展开更多
关键词 缺陷检测 yolov5 注意力机制 轻量化模型 特征融合
下载PDF
改进YOLOv5s的无人机视角下小目标检测算法 被引量:7
20
作者 刘涛 高一萌 +1 位作者 柴蕊 李政通 《计算机工程与应用》 CSCD 北大核心 2024年第1期110-121,共12页
无人机视角的小目标图像具有目标分布密集、类别不均衡以及特征不明显的特点,导致目标检测任务中出现漏检、误检的问题。针对这些问题,提出一种改进YOLOv5s小目标检测方法,以达到提高目标检测准确率与精确度的目的。重新聚类锚框,更精... 无人机视角的小目标图像具有目标分布密集、类别不均衡以及特征不明显的特点,导致目标检测任务中出现漏检、误检的问题。针对这些问题,提出一种改进YOLOv5s小目标检测方法,以达到提高目标检测准确率与精确度的目的。重新聚类锚框,更精确地锁定检测区域。更改骨干网络结构,在空间金字塔池化层增加卷积,保证充分获取检测目标特征。同时,将网络结构中的C3模块替换成融合通道注意力机制的轻量级SEC2f模块,以提升网络对于小目标检测的局部特征捕获能力。融合解耦检测头,结合自适应锚框计算,有效提取目标区域的特征。在相同参数、相同环境条件下,在DOTA数据集上和VisDrone数据集上检测精度分别提升6.1%、5.2%,表明改进方法在小目标检测任务上的有效性;在公开数据集voc2007+2012上做通用性对比实验,结果表明改进算法具有通用性。 展开更多
关键词 yolov5s 聚类算法 SEC2f模块 空间金字塔池化 解耦检测头
下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部