期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv5的电力设备检测算法 被引量:3
1
作者 郑婷婷 周浩 王秋忆 《电子测量技术》 北大核心 2023年第4期155-160,共6页
针对电力设备背景复杂、小目标密集等特点导致无人机智能电力巡检精度低、效果不佳等问题,提出了一种改进YOLOv5的目标检测算法。首先在原模型上增加一层检测层,重新获取锚点框以便能更好地学习密集小目标的多级特征,提高模型应对复杂... 针对电力设备背景复杂、小目标密集等特点导致无人机智能电力巡检精度低、效果不佳等问题,提出了一种改进YOLOv5的目标检测算法。首先在原模型上增加一层检测层,重新获取锚点框以便能更好地学习密集小目标的多级特征,提高模型应对复杂电力场景的能力;其次对模型的特征融合模块PANet结构进行改进,通过跳跃连接的方式融合不同尺度的特征,增强信息的传播与重用;最后结合协同注意力模块设计主干网络,以聚焦目标特征,增强复杂背景中密集目标区域的显著度。实验结果表明:所提算法的平均精度均值(IoU=0.5)达到97.1%,比原网络检测性能提升了5.6%,有效改善了复杂背景下小目标的错测、漏检现象。 展开更多
关键词 YOLOv5算法 电力设备检测 注意力机制 多尺度检测 特征融合
下载PDF
基于YOLOV5网络模型的市政道路检测识别 被引量:5
2
作者 韩佳彤 张宏娜 +5 位作者 李召波 任星润 翟强 冯茂盛 石东升 马政 《内蒙古大学学报(自然科学版)》 CAS 北大核心 2021年第5期514-519,共6页
根据十四五规划中提出的加快智能化城市建设服务体系,市政道路是智慧城市建设的重要内容,道路损坏检测则是保证市政道路良好管理的重要手段。本文利用YOLOV5算法经过数据集制作、实验设定、模型训练、问题识别等过程对呼和浩特市市政道... 根据十四五规划中提出的加快智能化城市建设服务体系,市政道路是智慧城市建设的重要内容,道路损坏检测则是保证市政道路良好管理的重要手段。本文利用YOLOV5算法经过数据集制作、实验设定、模型训练、问题识别等过程对呼和浩特市市政道路损害情况识别,识别后通过系统及时告知维修人员检修,大大节省了人力和时间成本。对数据集中2000多张市政道路图像进行标注及分类及模型训练,实验表明,本文的模型mAP达到了0.9以上,该方法可以提高市政道路图像的检测精度。 展开更多
关键词 深度学习 市政基础设施 YOLOV5算法 特征检测识别
下载PDF
基于改进YOLOv5的煤矿井下暗环境矿工安全穿戴智能识别
3
作者 顾清华 何鑫鑫 +2 位作者 王倩 李学现 郭小川 《矿业研究与开发》 CAS 北大核心 2024年第3期201-208,共8页
煤矿井下矿工安全智能识别是防止矿工受到意外伤害的重要保护措施之一。为了提高煤矿井下光线不足等暗环境下的识别准确率,提出一种基于改进YOLOv5的目标检测算法对矿工安全穿戴进行智能识别。首先,实地采集数据构建安全穿戴数据集,将... 煤矿井下矿工安全智能识别是防止矿工受到意外伤害的重要保护措施之一。为了提高煤矿井下光线不足等暗环境下的识别准确率,提出一种基于改进YOLOv5的目标检测算法对矿工安全穿戴进行智能识别。首先,实地采集数据构建安全穿戴数据集,将其输入到弱光增强网络Zero-DCE中,提升模型的泛化能力;其次,提出C-ASPP模块,通过对ASPP改进并加入注意力机制,将其加入主干网络之中,使模型更加高效关注安全穿戴区域的特征;然后,在主干融入Transformer算法,增强模型对不同尺度目标的动态调整能力;最后,在特征融合阶段,使用双向特征融合金字塔模型,提高模型的特征提取能力和检测性能。试验结果表明:改进后的YOLOv5算法的平均检测精度提升至90.2%,较原算法提高了3个百分点,检测速度为81.2帧/s,相较于其他算法有着较高的准确度和速度,可满足井下工作区域内矿工安全穿戴识别要求。 展开更多
关键词 安全智能识别 改进YOLOv5算法 井下暗环境 矿工安全穿戴
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部