基于红外图像的行人识别是现代安防系统的重要组成部分。在计算资源受限场景,由于红外行人检测算法中模型尺寸的影响,检测精度与部署难度往往难以平衡。针对此问题,本文提出了一种基于YOLOv5s的轻量化目标检测算法:首先引入MobileNetv3...基于红外图像的行人识别是现代安防系统的重要组成部分。在计算资源受限场景,由于红外行人检测算法中模型尺寸的影响,检测精度与部署难度往往难以平衡。针对此问题,本文提出了一种基于YOLOv5s的轻量化目标检测算法:首先引入MobileNetv3轻量化特征提取网络,并使用深度可分离卷积减小模型尺寸,使其更易部署至CPU设备;其次,将最近邻插值上采样方式替换为CARAFE(Content-Aware ReAssembly of FEatures),明显提升了图像重建效果;最后使用EIOU Loss作为边界框损失函数改善模型回归性能。本文在采样后的LLVIP红外行人图像数据集上进行了测试:对于红外图像下的行人目标,本文在保持高检测精度(AP=95.4%)的同时,模型大小减少80.6%,参数量减少82.8%;在使用CPU平台进行推理时,推理速度提升43.3%,且检测多尺度目标的性能有所提升。以上两方面结果验证了算法的有效性。展开更多
自动售货柜行业在中国内地地区大中城市中发展势头迅猛。传统的售货柜采用硬件分隔、重量判断和射频感应等商品识别方法,导致售货柜空间利用率低和购物体验较差。目前基于深度学习的目标检测方法如YOLOv5s等被应用于商品识别领域,而现...自动售货柜行业在中国内地地区大中城市中发展势头迅猛。传统的售货柜采用硬件分隔、重量判断和射频感应等商品识别方法,导致售货柜空间利用率低和购物体验较差。目前基于深度学习的目标检测方法如YOLOv5s等被应用于商品识别领域,而现有的目标检测算法网络模型参数多、计算量大,难以在售货柜嵌入式系统部署应用。针对上述问题基于YOLOv5s提出一种轻量化的商品识别算法模型。首先采用轻量化网络ShuffleNetv2替换YOLOv5s原来的主干网络,大量缩减网络模型的参数数量和计算量;然后在模型颈部的所有C3层引入注意力机制CBAM形成C3CBAM,提取图像中的关键信息进行自适应特征融合,提高网络检测精度;最后利用WIoU Loss代替CIo U Loss作为回归损失函数,借助WIo U的动态非单调聚焦机制重点关注普通质量的锚框,提高网络模型的整体性能。设置4组不同的实验进行验证分析,实验结果表明,利用ShuffleNetv2替换原始YOLOv5s的主干网络后,网络的参数量和计算量分别降低了84.3%和86.4%,有效减少了内存占有率,改进后的YOLOv5s算法实现了模型轻量化和检测精度的有效平衡,能够部署在售货柜嵌入式系统中进行商品识别,对商品智能识别算法方面的研究具有重要借鉴意义。展开更多
文摘基于红外图像的行人识别是现代安防系统的重要组成部分。在计算资源受限场景,由于红外行人检测算法中模型尺寸的影响,检测精度与部署难度往往难以平衡。针对此问题,本文提出了一种基于YOLOv5s的轻量化目标检测算法:首先引入MobileNetv3轻量化特征提取网络,并使用深度可分离卷积减小模型尺寸,使其更易部署至CPU设备;其次,将最近邻插值上采样方式替换为CARAFE(Content-Aware ReAssembly of FEatures),明显提升了图像重建效果;最后使用EIOU Loss作为边界框损失函数改善模型回归性能。本文在采样后的LLVIP红外行人图像数据集上进行了测试:对于红外图像下的行人目标,本文在保持高检测精度(AP=95.4%)的同时,模型大小减少80.6%,参数量减少82.8%;在使用CPU平台进行推理时,推理速度提升43.3%,且检测多尺度目标的性能有所提升。以上两方面结果验证了算法的有效性。
文摘自动售货柜行业在中国内地地区大中城市中发展势头迅猛。传统的售货柜采用硬件分隔、重量判断和射频感应等商品识别方法,导致售货柜空间利用率低和购物体验较差。目前基于深度学习的目标检测方法如YOLOv5s等被应用于商品识别领域,而现有的目标检测算法网络模型参数多、计算量大,难以在售货柜嵌入式系统部署应用。针对上述问题基于YOLOv5s提出一种轻量化的商品识别算法模型。首先采用轻量化网络ShuffleNetv2替换YOLOv5s原来的主干网络,大量缩减网络模型的参数数量和计算量;然后在模型颈部的所有C3层引入注意力机制CBAM形成C3CBAM,提取图像中的关键信息进行自适应特征融合,提高网络检测精度;最后利用WIoU Loss代替CIo U Loss作为回归损失函数,借助WIo U的动态非单调聚焦机制重点关注普通质量的锚框,提高网络模型的整体性能。设置4组不同的实验进行验证分析,实验结果表明,利用ShuffleNetv2替换原始YOLOv5s的主干网络后,网络的参数量和计算量分别降低了84.3%和86.4%,有效减少了内存占有率,改进后的YOLOv5s算法实现了模型轻量化和检测精度的有效平衡,能够部署在售货柜嵌入式系统中进行商品识别,对商品智能识别算法方面的研究具有重要借鉴意义。