通过机器视觉算法精确定位配电柜仪表的位置是实现仪表智能化识别的关键。针对配电柜背景复杂、字符尺度多样和相机像素低而导致的目标定位精度不高问题,提出一种面向配电柜字符识别的YOLOv7-MSBP目标定位算法。首先,设计Micro-branch...通过机器视觉算法精确定位配电柜仪表的位置是实现仪表智能化识别的关键。针对配电柜背景复杂、字符尺度多样和相机像素低而导致的目标定位精度不高问题,提出一种面向配电柜字符识别的YOLOv7-MSBP目标定位算法。首先,设计Micro-branch检测分支,改进初始锚框铺设间隔,从而提高对小目标的检测精度。其次,引入双向特征金字塔网络(BiFPN)跨尺度融合不同层特征值,以改善因下采样造成的细节特征丢失、特征融合不充分的现象;同时,设计同步混合阈卷积注意力模块(Syn-CBAM),加权融合通道和空间注意力特征,以提升算法的特征提取能力;并且,在主干网络引入部分卷积(PConv)模块,以降低算法冗余和延迟,提高检测速度。最后,将YOLOv7-MSBP的定位结果送入Paddle OCR(Optical Character Recognition)模型识别字符。实验结果表明,YOLOv7-MSBP算法的平均精度均值(mAP)达到93.2%,与YOLOv7算法相比提高了4.3个百分点,可见所提算法能够快速准确定位识别配电柜字符,验证了所提算法的有效性。展开更多
随着深度学习在国内目标检测的不断应用,常规的大、中目标检测已经取得惊人的进步,但由于卷积网络本身的局限性,针对小目标检测依然会出现漏检、误检的问题,以数据集Visdrone2019和数据集FloW-Img为例,对YOLOv7模型进行研究,在网络结构...随着深度学习在国内目标检测的不断应用,常规的大、中目标检测已经取得惊人的进步,但由于卷积网络本身的局限性,针对小目标检测依然会出现漏检、误检的问题,以数据集Visdrone2019和数据集FloW-Img为例,对YOLOv7模型进行研究,在网络结构上对骨干网的ELAN模块进行改进,将Focal NeXt block加入到ELAN模块的长短梯度路径中融合来强化输出小目标的特征质量和提高输出特征包含的上下文信息含量,在头部网络引入RepLKDeXt模块,该模块不仅可以取代SPPCSPC模块来简化模型整体结构还可以利用多通道、大卷积核和Cat操作来优化ELAN-H结构,最后引入SIOU损失函数取代CIOU函数以此提高该模型的鲁棒性。结果表明改进后的YOLOv7模型参数量减少计算复杂性降低并在小目标密度高的Visdrone 2019数据集上的检测性能近似不变,在小目标稀疏的FloW-Img数据集上涨幅9.05个百分点,进一步简化了模型并增加了模型的适用范围。展开更多
文摘通过机器视觉算法精确定位配电柜仪表的位置是实现仪表智能化识别的关键。针对配电柜背景复杂、字符尺度多样和相机像素低而导致的目标定位精度不高问题,提出一种面向配电柜字符识别的YOLOv7-MSBP目标定位算法。首先,设计Micro-branch检测分支,改进初始锚框铺设间隔,从而提高对小目标的检测精度。其次,引入双向特征金字塔网络(BiFPN)跨尺度融合不同层特征值,以改善因下采样造成的细节特征丢失、特征融合不充分的现象;同时,设计同步混合阈卷积注意力模块(Syn-CBAM),加权融合通道和空间注意力特征,以提升算法的特征提取能力;并且,在主干网络引入部分卷积(PConv)模块,以降低算法冗余和延迟,提高检测速度。最后,将YOLOv7-MSBP的定位结果送入Paddle OCR(Optical Character Recognition)模型识别字符。实验结果表明,YOLOv7-MSBP算法的平均精度均值(mAP)达到93.2%,与YOLOv7算法相比提高了4.3个百分点,可见所提算法能够快速准确定位识别配电柜字符,验证了所提算法的有效性。
文摘随着深度学习在国内目标检测的不断应用,常规的大、中目标检测已经取得惊人的进步,但由于卷积网络本身的局限性,针对小目标检测依然会出现漏检、误检的问题,以数据集Visdrone2019和数据集FloW-Img为例,对YOLOv7模型进行研究,在网络结构上对骨干网的ELAN模块进行改进,将Focal NeXt block加入到ELAN模块的长短梯度路径中融合来强化输出小目标的特征质量和提高输出特征包含的上下文信息含量,在头部网络引入RepLKDeXt模块,该模块不仅可以取代SPPCSPC模块来简化模型整体结构还可以利用多通道、大卷积核和Cat操作来优化ELAN-H结构,最后引入SIOU损失函数取代CIOU函数以此提高该模型的鲁棒性。结果表明改进后的YOLOv7模型参数量减少计算复杂性降低并在小目标密度高的Visdrone 2019数据集上的检测性能近似不变,在小目标稀疏的FloW-Img数据集上涨幅9.05个百分点,进一步简化了模型并增加了模型的适用范围。