期刊文献+
共找到57篇文章
< 1 2 3 >
每页显示 20 50 100
基于轻量化YOLOv7算法的侧扫声纳图像沉船检测
1
作者 王胜平 刘娉婷 +1 位作者 陈晓红 陈志高 《海洋测绘》 CSCD 北大核心 2024年第4期21-25,共5页
针对现有的侧扫声纳图像水下沉船检测方法存在检测速度慢,传统的YOLOv5算法存在的漏检的问题,提出基于轻量化YOLOv7算法的水下沉船检测改进方法。首先,通过随机翻转、随机噪声等操作扩充沉船图像的样本数量;然后,引入迁移学习策略,将在C... 针对现有的侧扫声纳图像水下沉船检测方法存在检测速度慢,传统的YOLOv5算法存在的漏检的问题,提出基于轻量化YOLOv7算法的水下沉船检测改进方法。首先,通过随机翻转、随机噪声等操作扩充沉船图像的样本数量;然后,引入迁移学习策略,将在COCO数据集上学习到的权重迁移到沉船检测的YOLOv7网络中;其次,改进模型损失函数中惩罚项的计算方式,提升收敛速度;最后在YOLOv7网络中引入FasterNet结构,减少模型的参数量和计算复杂度,降低模型对硬件的需求,达到轻量化模型的目的。实验结果表明,改进方法较原始YOLOv7算法在类平均精度值(mAP值)上提升了4.75%,检测速度也由原来的0.0218秒/帧提升到0.0179秒/帧,证明了改进方法的工程应用价值。 展开更多
关键词 侧扫声纳图像 沉船检测 yolov7算法 FasterNet结构 迁移学习
下载PDF
面向配电柜字符识别的YOLOv7-MSBP目标定位算法
2
作者 王呈 王炀 荣英佼 《计算机应用》 CSCD 北大核心 2024年第10期3191-3199,共9页
通过机器视觉算法精确定位配电柜仪表的位置是实现仪表智能化识别的关键。针对配电柜背景复杂、字符尺度多样和相机像素低而导致的目标定位精度不高问题,提出一种面向配电柜字符识别的YOLOv7-MSBP目标定位算法。首先,设计Micro-branch... 通过机器视觉算法精确定位配电柜仪表的位置是实现仪表智能化识别的关键。针对配电柜背景复杂、字符尺度多样和相机像素低而导致的目标定位精度不高问题,提出一种面向配电柜字符识别的YOLOv7-MSBP目标定位算法。首先,设计Micro-branch检测分支,改进初始锚框铺设间隔,从而提高对小目标的检测精度。其次,引入双向特征金字塔网络(BiFPN)跨尺度融合不同层特征值,以改善因下采样造成的细节特征丢失、特征融合不充分的现象;同时,设计同步混合阈卷积注意力模块(Syn-CBAM),加权融合通道和空间注意力特征,以提升算法的特征提取能力;并且,在主干网络引入部分卷积(PConv)模块,以降低算法冗余和延迟,提高检测速度。最后,将YOLOv7-MSBP的定位结果送入Paddle OCR(Optical Character Recognition)模型识别字符。实验结果表明,YOLOv7-MSBP算法的平均精度均值(mAP)达到93.2%,与YOLOv7算法相比提高了4.3个百分点,可见所提算法能够快速准确定位识别配电柜字符,验证了所提算法的有效性。 展开更多
关键词 yolov7算法 仪表识别 注意力机制 双向特征金字塔 机器视觉
下载PDF
基于麻雀搜索算法改进的YOLOv7-ECA-SSA模型的车辆检测
3
作者 陈红 张乐 《国外电子测量技术》 2024年第2期158-164,共7页
为解决复杂背景下小目标车辆检测存在的误检、漏检等现象,创新性提出一种改进YOLOv7网络的目标检测算法。首先,为解决小目标车辆存在次要信息干扰问题,将高效通道注意力(ECA)机制融于YOLOv7模型的主干网络特征层,通过自适应学习来增强... 为解决复杂背景下小目标车辆检测存在的误检、漏检等现象,创新性提出一种改进YOLOv7网络的目标检测算法。首先,为解决小目标车辆存在次要信息干扰问题,将高效通道注意力(ECA)机制融于YOLOv7模型的主干网络特征层,通过自适应学习来增强目标区域信息权重占比,抑制无关信息;其次,为解决神经网络检测模型训练的超参数随机经验设定性问题,将麻雀搜索算法(SSA)对检测模型训练超参数进行优化,通过内外双循环迭代方式,快速收敛出全局最优学习率,进而得到最优组的权重信息,最终提高小目标车辆检测精度。实验结果表明,基于结构优化、超参数优化的YOLOv7-ECA-SSA检测模型在BDD100K数据集上的检测精度为79.01%,比原始模型提高了5.38%,具备更好的小目标车辆检测性能。 展开更多
关键词 车辆目标检测 yolov7 注意力机制 超参数优化 麻雀搜索算法
下载PDF
基于改进YOLOv7的手套佩戴检测算法
4
作者 敖良忠 黄浩宇 《信息技术与信息化》 2024年第6期19-22,共4页
维修培训人员在进行培训时需要佩戴手套对飞机进行维修工作,若未佩戴手套进行操作,可能会出现安全问题。针对机务维修培训中,传统人工对培训人员是否佩戴手套的检测效率低下、容易漏检和误检,无法保障培训人员在培训过程中的安全问题,... 维修培训人员在进行培训时需要佩戴手套对飞机进行维修工作,若未佩戴手套进行操作,可能会出现安全问题。针对机务维修培训中,传统人工对培训人员是否佩戴手套的检测效率低下、容易漏检和误检,无法保障培训人员在培训过程中的安全问题,提出了基于改进YOLOv7的检测方法。在YOLOv7中引入SPDconv模块,提高模型针对小目标和低分辨率图片的检测性能。同时,在模型的Backbone中加入CBAM注意力机制,以提高模型的精度。改进后的YOLOv7手套佩戴检测算法平均精度均值达到86.5%,相较于原本的YOLOv7算法,精度提高了4.3%。实验表明,改进后的算法能有效地检测出维修培训人员的手套佩戴情况。 展开更多
关键词 目标检测 佩戴检测 yolov7算法 小目标
下载PDF
基于通道剪枝的YOLOv7-tiny输电线路异物检测算法 被引量:1
5
作者 孙阳 李佳 《计算机工程与应用》 CSCD 北大核心 2024年第14期319-328,共10页
针对输电线路异物检测精度不佳且模型庞大的问题,提出了基于通道剪枝的改进YOLOv7-tiny算法用于输电线路异物检测。用ReXNet网络替代了YOLOv7-tiny的骨干网络改进原网络的特征瓶颈问题。引入了多样化分支块从而增加网络特征融合能力,通... 针对输电线路异物检测精度不佳且模型庞大的问题,提出了基于通道剪枝的改进YOLOv7-tiny算法用于输电线路异物检测。用ReXNet网络替代了YOLOv7-tiny的骨干网络改进原网络的特征瓶颈问题。引入了多样化分支块从而增加网络特征融合能力,通过基于层自适应幅度的修剪(LAMP)剪枝方案损失一定精度换取模型体积、运算量的降低,为下一步部署到嵌入式设备做好准备。实验结果表明,最终的改进模型相对于YOLOv7-tiny模型精度上提升3个百分点,FPS提升原来的119.4%,模型大小压缩到原来的14%。 展开更多
关键词 输电线路 yolov7-tiny算法 通道剪枝 异物检测
下载PDF
基于改进YOLOv7的湖面漂浮物目标检测算法 被引量:3
6
作者 徐宏伟 李然 张家旭 《现代电子技术》 北大核心 2024年第1期105-110,共6页
为提高湖面多种类和小体积的漂浮垃圾检测识别的准确度与推理检测速度,结合湖面垃圾漂浮物的图像特征,采用半结构化剪枝技术创建X-Toss剪枝框架,并基于YOLOv7目标检测模型,提出一种轻量化湖面漂浮物实时检测方法C-X-YOLOv7。X-Toss剪枝... 为提高湖面多种类和小体积的漂浮垃圾检测识别的准确度与推理检测速度,结合湖面垃圾漂浮物的图像特征,采用半结构化剪枝技术创建X-Toss剪枝框架,并基于YOLOv7目标检测模型,提出一种轻量化湖面漂浮物实时检测方法C-X-YOLOv7。X-Toss剪枝框架使用DFS算法生成父子卷积核计算图,利用特定的内核模式剪枝卷积核,降低迭代剪枝的计算成本。融合CA注意力机制对模型进行加权,减少模型过拟合现象,提高模型准确性和泛化能力。结果表明:对湖面垃圾检测识别,C-X-YOLOv7模型识别准确率为91.7%,召回率为91.2%,与YOLOv7模型对比分别提升2.6%、2.5%;推理加速度上,X-Toss剪枝框架在RTX 2080 Ti与NVIDIA Jetson TX2上分别实现YOLOv7的1.98×和2.17×的加速比,相较于PD、NMS、NS等剪枝框架,X-Toss的推理加速比和能耗均有提升。研究表明C-X-YOLOv7湖面漂浮物检测方法为湖面垃圾检测识别提供了一种新思路。 展开更多
关键词 目标检测 yolov7 剪枝技术 半结构化剪枝 DFS算法 注意力机制 推理加速比 湖面漂浮物
下载PDF
面向带钢表面小目标缺陷检测的改进YOLOv7算法 被引量:2
7
作者 樊嵘 马小陆 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第3期303-308,316,共7页
带钢表面小目标缺陷检测是工业质检领域的研究热点。针对热轧带钢表面缺陷检测任务中小目标缺陷易产生漏检的问题,文章提出一种改进的YOLOv7算法。在骨干网络中融入通道空间注意力模块(convolutional block attention module,CBAM)和可... 带钢表面小目标缺陷检测是工业质检领域的研究热点。针对热轧带钢表面缺陷检测任务中小目标缺陷易产生漏检的问题,文章提出一种改进的YOLOv7算法。在骨干网络中融入通道空间注意力模块(convolutional block attention module,CBAM)和可重参数化卷积模块,以提升小目标特征的提取效率;采用改进的双向特征金字塔网络(bi-directional feature pyramid network,BiFPN)颈部网络替换原有的路径聚合网络(path aggregation network,PANet)颈部网络,实现对小目标缺陷特征的高效提纯;采用解耦检测头进行检测结果输出,使网络在训练时进一步收敛至更高精度。实验结果表明,改进后的YOLOv7算法在小目标带钢缺陷检测场景下检测精度领先YOLOv7算法4.3 AP50精度,领先YOLOv6算法5.0 AP50精度,领先YOLOX算法4.8 AP50精度,说明该算法可以较好地应用于小目标带钢缺陷检测。 展开更多
关键词 机器视觉 缺陷检测 yolov7算法 双向特征金字塔网络(BiFPN) 注意力机制
下载PDF
改进YOLOv7算法的排水管道缺陷检测与几何表征
8
作者 曾飞 李斌 +1 位作者 周健 樊江峰 《现代制造工程》 CSCD 北大核心 2024年第3期110-118,共9页
定期检查排水管道可以及时发现严重缺陷,对保证排水系统健康运行和城市环境安全具有重要意义。针对排水管道低照度和低分辨率检测困难现状,提出一种改进YOLOv7算法的排水管道缺陷检测与几何表征方法。首先,利用对比度受限自适应直方图... 定期检查排水管道可以及时发现严重缺陷,对保证排水系统健康运行和城市环境安全具有重要意义。针对排水管道低照度和低分辨率检测困难现状,提出一种改进YOLOv7算法的排水管道缺陷检测与几何表征方法。首先,利用对比度受限自适应直方图均衡化图像增强技术,改善图像的对比度和细节,以提高检测网络对排水管道缺陷的捕获能力;其次,基于设计的Drop-CA和MC模块改进YOLOv7算法,使网络获得浅层缺陷的语义信息并降低误检率,提高模型的分类和定位能力;最后,针对裂缝和断裂2种严重缺陷,设计了一种定量描述该缺陷的几何特征方法来评估缺陷的大小。实验结果表明,改进的网络模型最终平均精度达到93.3%,检测速度达到42.9 f/s。该方法有效提升排水管道缺陷检测和分类精度,且可以有效表征缺陷的几何特征。 展开更多
关键词 图像增强 缺陷检测 改进的yolov7算法 Drop-CA 几何特征
下载PDF
基于YOLOv7-tiny改进的交通标志小目标实时检测算法
9
作者 牟家宇 南新元 《科学技术与工程》 北大核心 2024年第30期13072-13079,共8页
在自然环境下精确实时地检测交通标志小目标对自动驾驶和智慧交通有着重要意义,然而现有算法难以平衡速度与精度的问题。基于YOLOv7-tiny算法,提出了一种改进YOLOv7-tiny的交通标志小目标实时检测算法,即YOLO-T算法。采用条件参数化卷积... 在自然环境下精确实时地检测交通标志小目标对自动驾驶和智慧交通有着重要意义,然而现有算法难以平衡速度与精度的问题。基于YOLOv7-tiny算法,提出了一种改进YOLOv7-tiny的交通标志小目标实时检测算法,即YOLO-T算法。采用条件参数化卷积(CondConv)结构,提升了骨干网络的特征提取能力。为增强对小目标的定位准确度并保证检测速度,设计了TinyFPN特征融合网络结构和ELAN-P网络聚合层。为了验证YOLO-T算法的有效性,在TT100K数据集上做了消融实验和对比实验。实验结果表明,在训练样本及训练设备参数相同的情况下,YOLO-T比YOLOv7-tiny算法的均值平均精度(mAP)提升了16.8%,并且单张图片的检测时间仅10.2 ms。可见,所提的YOLO-T算法能够平衡交通标志小目标的检测速度与精度。 展开更多
关键词 交通标志检测 小目标 YOLO-T算法 yolov7-tiny算法
下载PDF
基于改进YOLOv7-tiny算法的多种类不均衡样本水稻害虫检测
10
作者 李鑫 南新元 《山东农业科学》 北大核心 2024年第6期133-142,共10页
为实现基于机器视觉的田间水稻害虫检测,本研究结合IP102农业害虫数据集及网络资源,建立了含有26类标签的不均衡样本水稻害虫数据集;改进YOLOv7-tiny单阶段目标检测算法,以部分卷积PConv作为主要卷积核,结合极化自注意力机制(Polarized ... 为实现基于机器视觉的田间水稻害虫检测,本研究结合IP102农业害虫数据集及网络资源,建立了含有26类标签的不均衡样本水稻害虫数据集;改进YOLOv7-tiny单阶段目标检测算法,以部分卷积PConv作为主要卷积核,结合极化自注意力机制(Polarized Self-Attention),将提取到的特征进行复杂双向多尺度特征融合,建立了适合多种类不均衡样本的水稻害虫检测模型。结果表明,在加入迁移学习和多尺度训练的条件下,改进后的YOLOv7-tiny检测算法在自建水稻害虫数据集的平均检测精度达到96.4%,单张图片的检测时间为8.8 ms,模型大小为9 055 kb,可实现对田间水稻害虫的快速准确识别,为水稻害虫的智能化检测和防治提供了技术支持。 展开更多
关键词 水稻害虫检测 改进yolov7-tiny算法 部分卷积 极化自注意力机制 特征融合 迁移学习
下载PDF
基于YOLOv7-Tiny算法的无人机实时跟踪野生动物方法
11
作者 阎婧宇 谢永华 《野生动物学报》 北大核心 2024年第2期251-261,共11页
借助无人机边缘计算技术监测野生动物的运动状态和种群发展变化已成为科研工作者广泛使用的技术手段。传统跟踪算法算力高,机载边缘设备硬件资源算力不足,在户外复杂的自然环境下难以实现实时跟踪。为解决野外环境中无人机跟踪野生动物... 借助无人机边缘计算技术监测野生动物的运动状态和种群发展变化已成为科研工作者广泛使用的技术手段。传统跟踪算法算力高,机载边缘设备硬件资源算力不足,在户外复杂的自然环境下难以实现实时跟踪。为解决野外环境中无人机跟踪野生动物时遇到树木遮挡和背景干扰导致无法准确实时跟踪的问题,选取东北地区东北虎(Panthera tigris altaica)、狍(Capreolus pygargus mantschuricus)和驯鹿(Rangifer tarandus phylarchus)为研究对象,以YOLOv7-Tiny+Bot-SORT作为检测跟踪的基础框架,提出了一种轻量化的无人机跟踪算法。首先,采用FasterNet网络减少模型冗余计算,增强特征图中目标区域关注度;其次,采用高效通道注意力机制实现局部跨通道交流,降低复杂环境对检测网络的影响,提升网络检测能力;最后,为降低计算成本,替换重识别网络,提高无人机跟踪速度。结果显示:提出的实时跟踪方法准确度(MOTA)和精确度(MOTP)分别达到79.93%和73.48%,跟踪速度从3.4帧/s提升到43.4帧/s。研究表明,提出的算法不仅在提升跟踪精度和速度方面表现出色,而且更适用于算力有限的边缘设备,为保护野生动物的多样性和群体行为研究提供了强大的技术支持。 展开更多
关键词 多目标跟踪 yolov7-Tiny算法 野生动物 无人机 轻量化
下载PDF
基于YOLOv7和图像分块的车道线破损检测算法
12
作者 温王鹏 罗文婷 +3 位作者 李林 张德津 陈文婷 吴镇涛 《传感器与微系统》 CSCD 北大核心 2024年第9期131-134,139,共5页
提出了一种结合YOLOv7和图像分块的车道线破损检测方法。首先,利用YOLOv7模型检测并提取车道线区域。其次,运用Otsu法计算每个子块的阈值及子块背景区域和目标区域的灰度均值差值,以此实现二值化。然后,采用双线性插值法平滑图像,实现... 提出了一种结合YOLOv7和图像分块的车道线破损检测方法。首先,利用YOLOv7模型检测并提取车道线区域。其次,运用Otsu法计算每个子块的阈值及子块背景区域和目标区域的灰度均值差值,以此实现二值化。然后,采用双线性插值法平滑图像,实现车道线分割,并利用拓扑结构分析法提取车道线轮廓。最后,设计了像素统计、直线拟合、割断检测3种方法判断车道线是否破损。实验结果表明:在不同场景下,该算法在破损车道线检测中的精确率为91.79%,具有较好的检测效果和一定的应用价值。 展开更多
关键词 车道线破损检测 深度学习 yolov7算法 分块分割 最大类间方差法
下载PDF
YOLOv7的实时遥感图像舰船目标旋转检测算法分析
13
作者 周春云 《集成电路应用》 2024年第1期28-29,共2页
阐述一种用于检测遥感图像中带有旋转角度舰船的YOLOv7算法,在YOLOv7的基础上加入角度分量信息检测舰船旋转角度,在特征提取部分加入NAM注意力模块以保证不损失速度的前提下提高对大尺度遥感图像中检测目标的准确度。探讨在异构AI计算... 阐述一种用于检测遥感图像中带有旋转角度舰船的YOLOv7算法,在YOLOv7的基础上加入角度分量信息检测舰船旋转角度,在特征提取部分加入NAM注意力模块以保证不损失速度的前提下提高对大尺度遥感图像中检测目标的准确度。探讨在异构AI计算环境中,通过自建遥感舰船图像数据集,完成训练和推理验证。 展开更多
关键词 智能算法 yolov7 遥感图像 旋转目标检测
下载PDF
面向智慧养老的改进YOLOv7人脸识别算法
14
作者 戴莹 叶贵 《信息工程大学学报》 2024年第2期175-180,226,共7页
针对目前社会老龄化趋势,为适应养老领域发展需求,提出面向智慧养老的改进YOLOv7人脸识别算法。首先,提出多尺度信息输入模块,提取图像的全局信息,提高信息利用率;其次,总结归纳老年人脸特征,提出全局自适应特征提取模块,结合注意力机... 针对目前社会老龄化趋势,为适应养老领域发展需求,提出面向智慧养老的改进YOLOv7人脸识别算法。首先,提出多尺度信息输入模块,提取图像的全局信息,提高信息利用率;其次,总结归纳老年人脸特征,提出全局自适应特征提取模块,结合注意力机制改进主干网络和检测头;最后,通过迁移学习方法训练网络,并加入多项式损失策略分配特征权重,同时不断调试参数来提高网络识别能力。实验结果表明,所提网络在老年人脸数据上的精度和召回率分别为95.26%和91.57%,并且相比于原YOLOv7的网络参数量下降了5.4%。 展开更多
关键词 智慧养老 人脸识别 yolov7算法 注意力机制
下载PDF
基于改进YOLOv7的结构光条纹图像一致性交互目标定位算法
15
作者 廖雪清 朱文娟 《桂林航天工业学院学报》 2024年第5期755-760,共6页
受结构光条纹图像自身特点的影响,在设计图像一致性交互目标定位算法时,很容易出现定位失败或者定位精度过低等情况,导致算法的定位效果不佳。为了解决这一问题,提出了一种基于改进YOLOv7的结构光条纹图像一致性交互目标定位算法。利用... 受结构光条纹图像自身特点的影响,在设计图像一致性交互目标定位算法时,很容易出现定位失败或者定位精度过低等情况,导致算法的定位效果不佳。为了解决这一问题,提出了一种基于改进YOLOv7的结构光条纹图像一致性交互目标定位算法。利用相关设备获取大量的结构光条纹图像,并计算图像中不同类型信息的参数,剔除图像中的噪声,再提取图像中的相位信息。通过引入注意力机制,对YOLOv7算法进行改进,设定相应的损失函数得到最终的定位结果,完成对结构光条纹图像一致性交互目标定位算法的设计。在实验测试中,新算法在实际应用中交并比较高,定位效果较好。 展开更多
关键词 改进yolov7算法 结构光条纹图像 一致性交互 目标定位
下载PDF
基于改进YOLOv7算法的井场作业安全检测方法研究
16
作者 孙亚招 王景浩 李宗祥 《石油工业技术监督》 2024年第5期43-47,70,共6页
针对油井场作业中因监管效率低下导致的安全事故问题,提出了一种改进的YOLOv7算法来检测井场作业人员不安全行为。首先,将YOLOv7模型颈部中的原金字塔池化模块替换为空洞空间金字塔池化(ASPP)模块,ASPP采用多个并行的空洞卷积分支,每个... 针对油井场作业中因监管效率低下导致的安全事故问题,提出了一种改进的YOLOv7算法来检测井场作业人员不安全行为。首先,将YOLOv7模型颈部中的原金字塔池化模块替换为空洞空间金字塔池化(ASPP)模块,ASPP采用多个并行的空洞卷积分支,每个分支具有不同的采样率,从而获得不同尺度的感受野,提高了模型对多尺度特征信息的捕获能力;其次将YOLOv7模型检测头中的普通卷积替换为全维度动态卷积,从4个维度来学习卷积核内部的注意力值,从而获得全维度的卷积核权重,增强了模型对关键特征的关注度。最后,与原YOLOv7模型进行实验对比。结果表明,改进后的模型平均精度均值提高了5.58%。与其他目标检测模型相比,检测性能有显著提升。 展开更多
关键词 yolov7算法 不安全行为 空洞空间金字塔池化 全维度动态卷积
下载PDF
基于YOLOv7的矿工吸烟识别方法研究 被引量:2
17
作者 王彬 赵作鹏 《现代信息科技》 2024年第6期66-69,73,共5页
井下矿工的吸烟行为严重影响煤矿生产安全,对井下矿工吸烟行为的有效识别迫在眉睫。针对煤矿井下的特殊环境和传统识别方法准确率低的问题,提出一种基于YOLOv7的矿工吸烟行为识别算法YOLO-SFN。将SimAM嵌入到YOLOv7的网络结构中,用Focu... 井下矿工的吸烟行为严重影响煤矿生产安全,对井下矿工吸烟行为的有效识别迫在眉睫。针对煤矿井下的特殊环境和传统识别方法准确率低的问题,提出一种基于YOLOv7的矿工吸烟行为识别算法YOLO-SFN。将SimAM嵌入到YOLOv7的网络结构中,用Focus模块替换MPConv下分支中的3×3卷积核,提高模型在复杂背景下的特征提取能力。在后处理阶段采用Soft-NMS作为网络模型的后处理算法,解决了传统NMS算法在复杂密集环境中的漏检问题。实验结果表明,该方法的准确率为96.45%,召回率为92%,精确率为97.05%。研究成果已经在陈四楼煤矿得以推广应用,实现了对煤矿井下矿工吸烟行为的有效监管。 展开更多
关键词 目标检测 注意力机制 yolov7 NMS算法 吸烟识别
下载PDF
改进YOLOv7的城市小型无人机目标检测方法
18
作者 崔勇强 李嘉轩 +3 位作者 侯林果 梅涛 白迪 陈少平 《计算机工程与应用》 CSCD 北大核心 2024年第10期237-245,共9页
针对“低小动”无人机的反制技术已成为低空空域安全防御的重要手段,然而实时检测与准确识别是实施有效反制的前提条件与关键基础。针对城市低空环境下,目标检测算法对不同背景下小尺度无人机目标检测精度低,容易出现漏检误检且易受外... 针对“低小动”无人机的反制技术已成为低空空域安全防御的重要手段,然而实时检测与准确识别是实施有效反制的前提条件与关键基础。针对城市低空环境下,目标检测算法对不同背景下小尺度无人机目标检测精度低,容易出现漏检误检且易受外界因素干扰等问题,提出了一种基于改进YOLOv7的“低小动”无人机目标检测方法。首先采集大量不同环境、不同背景下的无人机样本构建数据集,并采用ViBe(visual background extractor)算法进行预处理;其次引入坐标注意力机制与SPDConv(space-to-depth convolution)模块改进和优化YOLOv7的网络结构;最后提出融合ViBe和改进YOLOv7的二级检测架构,将改进后的YOLOv7作为网络模型检测经ViBe处理后的图像。依据原图与处理图像的位置大小关系,将检测出的目标坐标映射回归至原图片,从而完成目标检测提取。实验结果表明,所提目标检测方法检测精度达96.5%,较原YOLOv7方法提高了15.8个百分点,显著提升了“低小动”目标的检测精度,能够满足低空无人机的实时精准检测的需求。 展开更多
关键词 ViBe算法 反无人机 yolov7 坐标注意力机制 小目标检测 SPDConv
下载PDF
一种基于改进YOLOv7的相机标定特征点检测方法
19
作者 陈松 闫国闯 +2 位作者 马方远 王西泉 田晓耕 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第8期151-160,共10页
在基于视觉方法的军事目标检测等技术中,相机的精确标定是进行目标高精度测量的前提,同时也是开展后续图像处理、目标跟踪、三维重建的基础。相机标定的关键在于准确的检测图像中的标定特征点。以当前使用范围较广的棋盘格标定法为对象... 在基于视觉方法的军事目标检测等技术中,相机的精确标定是进行目标高精度测量的前提,同时也是开展后续图像处理、目标跟踪、三维重建的基础。相机标定的关键在于准确的检测图像中的标定特征点。以当前使用范围较广的棋盘格标定法为对象,针对受干扰(模糊、重噪声、极端姿态和大镜头失真)的标定图像难以进行特征点提取的问题,提出一种融合改进YOLOv7-tiny深度学习网络和Harris角点检测的相机标定特征点检测算法。针对原始网络在相机标定特征区域检测中的各种问题,引入Gather-and-Distribute信息聚合分发机制替换YOLOv7-tiny的加强特征提取网络(FPN)部分,提高不同层之间特征融合的能力;在主干特征提取部分后加入Biformer注意力机制,提高对小尺寸特征点候选区域的捕捉能力;在Head部分使用改进Efficient Decoupled Head解耦头,在提高精度的同时维持了较低的计算开销。测试结果表明,改进后的YOLOv7-tiny网络对特征点候选区域检测的准确率有显著的提高,达到95.3%,证明了改进后网络的有效性和可行性。 展开更多
关键词 相机标定 深度学习 yolov7-tiny 信息聚合分发机制 注意力机制 HARRIS算法
下载PDF
基于YOLOv7的工件表面缺陷实时检测系统研究
20
作者 郭北涛 任天浩 《机械工程师》 2024年第7期19-21,26,共4页
针对现有工件表面缺陷检测方法在准确率、实时性及效率方面的不足,提出一种基于YOLOv7深度学习算法的工件表面缺陷检测系统模型。该模型在保证性能的同时扩大了检测范围,优化了模型结构,解决了作为工件表面缺陷检测主要难点之一的小目... 针对现有工件表面缺陷检测方法在准确率、实时性及效率方面的不足,提出一种基于YOLOv7深度学习算法的工件表面缺陷检测系统模型。该模型在保证性能的同时扩大了检测范围,优化了模型结构,解决了作为工件表面缺陷检测主要难点之一的小目标缺陷检测。试验结果表明,与改进前相比,在滚珠丝杠表面缺陷的检测中该模型的精确率得到了明显提高,检测速度和精度均达到实际工业生产效率需求。 展开更多
关键词 机器视觉 深度学习 表面缺陷 yolov7算法
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部