期刊文献+
共找到673篇文章
< 1 2 34 >
每页显示 20 50 100
基于YOLOv8改进的跌倒检测算法:CASL-YOLO
1
作者 徐慧英 赵蕊 +1 位作者 朱信忠 黄晓 《浙江师范大学学报(自然科学版)》 CAS 2025年第1期36-44,共9页
跌倒对老年人危害极大,是我国65岁以上老年人致残和伤害死亡的首要原因.然而,目前主流的跌倒检测技术受环境的干扰较大,在物体遮挡、光照变化等复杂场景下的检测准确率较低,且模型的参数量和计算量较高,导致成本居高不下,不能很好地部... 跌倒对老年人危害极大,是我国65岁以上老年人致残和伤害死亡的首要原因.然而,目前主流的跌倒检测技术受环境的干扰较大,在物体遮挡、光照变化等复杂场景下的检测准确率较低,且模型的参数量和计算量较高,导致成本居高不下,不能很好地部署应用于实际生活场景.针对上述问题,提出了一种在复杂环境下轻量级的基于YOLOv8模型改进的跌倒检测算法:CASL-YOLO.首先,该模型引入空间深度卷积(SPD-Conv)模块替代传统卷积模块,通过对每个特征映射进行卷积操作,保留通道维度中的全部信息,从而提高模型在低分辨率图像和小物体检测方面的性能;其次,引入基于位置信息的注意力机制,以捕获跨通道、方向和位置感知的信息,从而更准确地定位和识别人体目标;最后,在特征提取模块中引入选择性大卷积核(LSKNet)动态调整感受野,以有效处理跌倒检测场景中的复杂环境信息,提高网络的感知能力和检测精度.实验结果表明,在公开的Human Fall数据集上,CASL-YOLO的mAP@0.5达到96.8%,优于基线YOLOv8n,同时模型仅有3.4×MiB的参数量和11.7×10~9的计算量.相比其他检测算法,CASL-YOLO在参数量和计算量小幅增加的情况下,实现了更高的精度和性能,同时满足实际场景的部署要求. 展开更多
关键词 跌倒检测 yolov8 注意力机制 空间深度卷积 选择性大卷积核
下载PDF
改进YOLOv8的无人机航拍图像目标检测算法
2
作者 梁燕 何孝武 +1 位作者 邵凯 陈俊宏 《计算机工程与应用》 北大核心 2025年第1期121-130,共10页
针对无人机航拍图像存在多个小目标聚集、目标尺度变化大的问题,提出一种改进YOLOv8的目标检测算法TS-YOLO(tiny and scale-YOLO)。在主干部分去除冗余的特征提取层,设计了一种高效特征提取模块(efficient feature extraction module,EF... 针对无人机航拍图像存在多个小目标聚集、目标尺度变化大的问题,提出一种改进YOLOv8的目标检测算法TS-YOLO(tiny and scale-YOLO)。在主干部分去除冗余的特征提取层,设计了一种高效特征提取模块(efficient feature extraction module,EFEM),避免小目标特征消失在冗余信息中。在颈部设计了一种双重跨尺度加权特征融合方法(dual cross-scale weighted feature-fusion,DCWF),融合多尺度信息的同时抑制噪声干扰,提升特征表达能力。通过构建一种参数共享检测头(parameter-shared detection header,PSDH),使回归和分类任务实现参数共享,保证检测精度的同时有效降低了模型的参数量。所提模型在VisDrone-2019数据集上的精度(P)和召回率(R)分别达到54.0%、42.5%;相比于原始YOLOv8s模型,mAP50提高了5.0个百分点,达到44.5%,且参数量减少了55.8%,仅有4.94×106;在DOTAv1.0遥感数据集上,mAP50达到71.9%,仍具有较好的泛化能力。 展开更多
关键词 目标检测 无人机航拍图像 yolov8 小目标 特征融合
下载PDF
基于YOLOv8算法改进模型检测梢斑螟虫蛀树木
3
作者 周宏威 纪皓文 +1 位作者 吴羿轩 赵鹏 《森林工程》 北大核心 2025年第1期126-137,共12页
梢斑螟是一种严重危害针叶树种的害虫,严重影响针叶树的健康和生长。梢斑螟虫的幼虫以针叶树的叶片为食物,在针叶树木中建立巢穴,逐渐摧毁叶片组织,导致叶片变黄、褪绿,最终树木枯萎。此外,幼虫也可能侵蚀树木的树皮,导致树皮剥落和树... 梢斑螟是一种严重危害针叶树种的害虫,严重影响针叶树的健康和生长。梢斑螟虫的幼虫以针叶树的叶片为食物,在针叶树木中建立巢穴,逐渐摧毁叶片组织,导致叶片变黄、褪绿,最终树木枯萎。此外,幼虫也可能侵蚀树木的树皮,导致树皮剥落和树干暴露,使树木易受其他害虫、病菌和自然元素的侵害,增加树木的脆弱性,降低其生存能力。为辅助地面治疗被梢斑螟虫蛀树木,采用YOLOv8s目标检测算法,实现对梢斑螟虫蛀树木的检测与识别。通过采用C2f-GAM和动态检测头建立模型(YOLOv8-DM),来提高YOLOv8s对于梢斑螟虫蛀树木的检测能力。试验结果表明,YOLOv8-DM能够有效地识别梢斑螟虫蛀树木,其平均精准度达到84.8%。与其他目标检测算法相比,YOLOv8-DM有更高的平均精准度。 展开更多
关键词 梢斑螟 yolov8s 识别 检测 准确率 不同场景 C2f-GAM DyHead
下载PDF
基于YOLOv8算法的稀土熔盐电解槽炉面温度监测研究
4
作者 侯伟 黄金堤 +1 位作者 李明周 李静 《有色金属(冶炼部分)》 CAS 北大核心 2025年第1期84-91,共8页
电解温度与稀土熔盐电解槽电流效率、炉体寿命紧密相关,然而热电偶测温、红外热成像等测量方法受电解车间高温强腐蚀环境影响难以实时检测。基于YOLOv8算法对熔盐电解槽炉面温度进行预测。首先,通过高温试验炉自制温度数据集并基于YOLOv... 电解温度与稀土熔盐电解槽电流效率、炉体寿命紧密相关,然而热电偶测温、红外热成像等测量方法受电解车间高温强腐蚀环境影响难以实时检测。基于YOLOv8算法对熔盐电解槽炉面温度进行预测。首先,通过高温试验炉自制温度数据集并基于YOLOv8算法训练获得温度区间分类模型;其次,采用图像灰度与温度关系式重建炉面图像温度云图;最后,基于YOLOv8-SSW算法构建了炉面温度图像识别模型,其预测准确率为93.4%,可用于电解槽炉面温度监测。 展开更多
关键词 稀土熔盐电解槽 温度检测 yolov8 目标分类
下载PDF
基于双目视觉和改进YOLOv8n的火灾检测及测距方法
5
作者 刘振 董绍江 +2 位作者 罗家元 孙世政 潘学娇 《陕西科技大学学报》 北大核心 2025年第1期152-160,共9页
针对火灾检测出现的漏检误检、模型参数量大及定位困难的问题,基于双目视觉和改进YOLOv8n提出了一种轻量化火灾检测及测距方法.通过双目相机拍摄图片,使用改进的检测算法YOLOv8n-AEM和现有的测距算法SGBM进行检测和测距.首先,在主干网... 针对火灾检测出现的漏检误检、模型参数量大及定位困难的问题,基于双目视觉和改进YOLOv8n提出了一种轻量化火灾检测及测距方法.通过双目相机拍摄图片,使用改进的检测算法YOLOv8n-AEM和现有的测距算法SGBM进行检测和测距.首先,在主干网络中引入可变核卷积AKConv和EMA注意力机制,通过构建不规则卷积核有效提取火灾的特征;然后,在颈部网络中构建C2f-SCConv模块,通过特征重组降低模型参数,提高检测速度;其次,基于最小点距离改进损失函数,解决火源与光源重叠导致的漏检与误检问题;最后,增加小目标检测头,提高对小火苗的检测能力.实验结果表明,改进后的检测算法P、R、mAP分别为83.6%、76.4%、83.6%,分别提高了2.5%、3.6%、4.8%;参数量和模型大小分别为2.54 M和5.1 MB,分别降低了15.3%和15%;测距精度误差不超过2.5%,证明改进的方法能准确完成火灾的检测及测距. 展开更多
关键词 火灾检测 双目视觉 测距 yolov8n 轻量化
下载PDF
YOLOv8-DEL:基于改进YOLOv8n的实时车辆检测算法研究
6
作者 古佳欣 陈高华 张春美 《计算机工程与应用》 北大核心 2025年第1期142-152,共11页
车辆检测是智能交通系统和自动驾驶的重要组成部分。然而,实际交通场景中存在许多不确定因素,导致车辆检测模型的准确率低实时性差。为了解决这个问题,提出了一种快速准确的车辆检测算法——YOLOv8-DEL。使用DGCST(dynamic group convol... 车辆检测是智能交通系统和自动驾驶的重要组成部分。然而,实际交通场景中存在许多不确定因素,导致车辆检测模型的准确率低实时性差。为了解决这个问题,提出了一种快速准确的车辆检测算法——YOLOv8-DEL。使用DGCST(dynamic group convolution shuffle transformer)模块代替C2f模块来重构主干网络,以增强特征提取能力并使网络更轻量;添加的P2检测层能使模型更敏锐地定位和检测小目标,同时采用Efficient RepGFPN进行多尺度特征融合,以丰富特征信息并提高模型的特征表达能力;通过结合GroupNorm和共享卷积的优点,设计了一种轻量型共享卷积检测头,在保持精度的前提下,有效减少参数量并提升检测速度。与YOLOv8相比,提出的YOLOv8-DEL在BDD100K数据集和KITTI数据集上,mAP@0.5分别提高了4.8个百分点和1.2个百分点,具有实时检测速度(208.6 FPS和216.4 FPS),在检测精度和速度方面实现了更有利的折中。 展开更多
关键词 车辆检测 yolov8 DGCST Efficient RepGFPN 轻量级检测头
下载PDF
基于改进YOLOv8的自动驾驶场景目标检测算法
7
作者 杨磊 陈艳菲 +2 位作者 李海鸣 石教兴 安培 《计算机工程与应用》 北大核心 2025年第1期131-141,共11页
针对自动驾驶场景遮挡目标和小目标检测困难问题,提出了FAN-YOLOv8n自动驾驶检测算法。设计了特征感受野融合模块(EFFVM),增强模型主干部分对局部特征的提取,提高模型对遮挡目标的检测能力;在模型头部增加了更浅特征层P2的检测头,提高... 针对自动驾驶场景遮挡目标和小目标检测困难问题,提出了FAN-YOLOv8n自动驾驶检测算法。设计了特征感受野融合模块(EFFVM),增强模型主干部分对局部特征的提取,提高模型对遮挡目标的检测能力;在模型头部增加了更浅特征层P2的检测头,提高模型对于小目标的检测效果;在模型颈部设计了特征指导模块(FGM)来融合浅层和深层的特征信息,使得两层之间能够更好地进行特征交互,让模型更关注细粒特征。提出了特征层融合模块(FLFM),融合多尺度特征层并进行特征增强,使模型能够自适应不同尺度目标的检测。实验结果表明,在SODA10M数据集和部分BDD100K数据集上,改进模型的mAP0.5对比原始YOLOv8n模型提升了7个百分点和6.5个百分点,适用于实际自动驾驶检测任务。 展开更多
关键词 自动驾驶 yolov8n 小目标 遮挡目标
下载PDF
优化改进YOLOv8无人机视角下目标检测算法
8
作者 孙佳宇 徐民俊 +3 位作者 张俊鹏 炎梦雪 操文 侯阿临 《计算机工程与应用》 北大核心 2025年第1期109-120,共12页
针对无人机视角下的目标存在多尺度、目标小、被遮挡与背景复杂等问题,提出了一种基于动态样本注意力尺度序列的YOLOv8改进算法BDAD-YOLO。通过引入BiFormer的思想来改造原模型骨干结构,提高模型对关键信息的关注度,更好地保留目标细粒... 针对无人机视角下的目标存在多尺度、目标小、被遮挡与背景复杂等问题,提出了一种基于动态样本注意力尺度序列的YOLOv8改进算法BDAD-YOLO。通过引入BiFormer的思想来改造原模型骨干结构,提高模型对关键信息的关注度,更好地保留目标细粒度细节信息。由于目标存在大小、位置等多变性,传统卷积并不能很好地处理这一情况,因此基于DCN(deformable convolutional network)的思想,设计了一种可以增强对小目标特征提取的C2_DCf模块,从而进一步提高颈部网络中小目标层对特征信息的融合。提出一种基于动态样本的注意力尺度序列融合框架AFD(attention-scale sequence fusion framework based on dynamic samples),使用轻量化动态点采样并通过融合不同尺度的特征图来增强网络提取多尺度信息的能力。使用WIoU损失函数,改善小目标低质量数据对梯度的不利影响,以加快网络收敛速度。实验结果表明,在VisDrone数据集中的val集与test集上平均精度(mAP@0.5)分别提升了4.6个百分点、3.7个百分点,在DOTA数据集上平均精度(mAP@0.5)提升了2.4个百分点,证明了改进算法的有效性和普适性。 展开更多
关键词 目标检测 无人机视角 yolov8 BiFormer 特征融合 损失函数
下载PDF
基于YOLOv8的林区行人目标检测研究
9
作者 李琳琳 孙海龙 《森林工程》 北大核心 2025年第1期138-150,共13页
为解决目标检测算法在林区行人检测中容易出现漏检及检测精度不足的问题,提出一种基于改进YOLOv8的林区行人目标检测算法。采用C2f_DWRSeg模块替换C2f模块,扩展初始卷积通道数,使网络能更高效地进行多尺度特征提取;提出一种重构的检测头... 为解决目标检测算法在林区行人检测中容易出现漏检及检测精度不足的问题,提出一种基于改进YOLOv8的林区行人目标检测算法。采用C2f_DWRSeg模块替换C2f模块,扩展初始卷积通道数,使网络能更高效地进行多尺度特征提取;提出一种重构的检测头,训练时增加卷积层的复杂性,推理时使用单分支结构,从而丰富网络的特征表示能力,并保持高效的推理速度;在特征融合前增加了卷积注意力机制模块CGA,减少计算量;使用Focaler-ShapeIoU损失函数代替CIoU损失函数,弥补边界框回归方法的不足,进一步提高检测能力。试验结果表明,与基准模型相比,改进后的算法mAP50提高了2%,mAP50-95提高了2.4%,模型的处理速度(FPS)提高了4.33%,证明改进后的算法能够更好地应用在林区行人检测的任务中。 展开更多
关键词 林区管理 行人检测 yolov8 注意力机制 损失函数 改进算法 深度学习 识别
下载PDF
基于改进YOLOv8的红外船舶检测
10
作者 王海群 魏培旭 +1 位作者 解浩龙 左嘉炜 《电光与控制》 北大核心 2025年第1期61-67,共7页
针对现有红外船舶检测算法检测精度低和实时性不足问题,提出一种基于改进YOLOv8的红外船舶检测算法。首先,将设计的MCA机制引入到YOLOv8的主干网络,增强主干网络的多尺度特征提取能力;其次,对YOLOv8的检测头进行共享参数和重参数化设计... 针对现有红外船舶检测算法检测精度低和实时性不足问题,提出一种基于改进YOLOv8的红外船舶检测算法。首先,将设计的MCA机制引入到YOLOv8的主干网络,增强主干网络的多尺度特征提取能力;其次,对YOLOv8的检测头进行共享参数和重参数化设计,以此提升检测头的检测效率;然后,使用BiFPN结构改进YOLOv8的颈部网络,利用双向信息流和可学习权重加强网络的特征表达能力;最后,使用Faster Block对YOLOv8的C2f模块进行改进,保持精度的同时减少参数量,提升算法的检测速度。该算法在红外船舶数据集上测试,mAP值达到了93.1%,相比较原算法提高了2.5个百分点,参数量比原算法减少了32.6%。实验结果表明,改进后的算法比原算法有了较大提升,证明了改进算法的有效性。 展开更多
关键词 红外船舶检测 yolov8 注意力机制 BiFPN
下载PDF
改进YOLOv8n的无人机航拍图像检测算法
11
作者 梁秀满 贾梓涵 +2 位作者 刘振东 于海峰 李然 《电光与控制》 北大核心 2025年第1期34-40,67,共8页
针对无人机航拍图像中目标小、尺度变化大和背景干扰等因素导致检测精度低、定位不准确的问题,提出一种改进YOLOv8n的无人机航拍图像目标检测算法。首先改进C2f模块,利用可变形卷积(DCN)替换其Bottleneck中的卷积以适应航拍图像中物体... 针对无人机航拍图像中目标小、尺度变化大和背景干扰等因素导致检测精度低、定位不准确的问题,提出一种改进YOLOv8n的无人机航拍图像目标检测算法。首先改进C2f模块,利用可变形卷积(DCN)替换其Bottleneck中的卷积以适应航拍图像中物体的形变和尺度变化,同时,在主干网络引入LSK注意力机制,实现动态调整空间感受野,从而在特征提取阶段更灵活地适应不同目标对背景信息需求的差异;然后改进颈部网络,增加一个较浅的检测层并移除大目标检测层,使网络能更有效地捕获小目标的特征以提升检测精度;最后引入WIoU损失函数,使模型更加关注低质量样本,得到更高的检测精度。在VisDrone2019数据集上进行对比实验和消融实验,mAP_(50)值较基线算法模型提升了5.2个百分点,参数量减少了20%,检测速度(FPS)达到87帧/s,能够满足实时性的检测需求。与主流算法进行对比实验,所提算法表现优于目前的主流算法。在DOTA数据集上进行泛化实验,mAP_(50)值提升了1.7个百分点,证明所提算法具有通用性。 展开更多
关键词 无人机图像 yolov8n 注意力机制 可变形卷积 WIoU
下载PDF
融合注意力机制的YOLOv8-TS交通标志检测网络
12
作者 黄智渊 方遒 郭星浩 《现代电子技术》 北大核心 2025年第1期179-186,共8页
道路交通标志识别是自动驾驶、车联网的重要组成部分,为进一步提高交通标志检测的精度和速度,提出一种基于YOLOv8s改进的YOLOv8-TS道路交通标志检测网络。首先,对YOLOv8s进行了整体的轻量化设计,并设计了Conv-G7S和CSP-G7S模块,减少了... 道路交通标志识别是自动驾驶、车联网的重要组成部分,为进一步提高交通标志检测的精度和速度,提出一种基于YOLOv8s改进的YOLOv8-TS道路交通标志检测网络。首先,对YOLOv8s进行了整体的轻量化设计,并设计了Conv-G7S和CSP-G7S模块,减少了网络的参数量;其次,设计了CSP-SwinTransformer模块,强化了模型利用窗口内的特征信息进行上下文感知和建模的能力;然后,在颈部网络融合了卷积注意力机制(CBAM),强化了模型对不同通道、空间权重信息的学习;最后,对损失函数进行了改进,提升了边界框回归性能。实验结果表明,在中国道路交通标志TT100K数据集上,精确率(Precision)、平均精度(mAP@0.5)分别提高了6.9%、3.7%,而改进后模型的参数量下降了75.4%,模型的大小仅为5.8 MB,平均精度(mAP@0.5)达到96.5%,检测速度由126.58 f/s提升至136.99 f/s。 展开更多
关键词 交通标志检测 yolov8-TS 轻量化 注意力机制 Conv-G7S WIoU
下载PDF
改进YOLOv8的轻量级军事飞机检测算法 被引量:2
13
作者 刘丽 张硕 +2 位作者 白宇昂 李宇健 张初夏 《计算机工程与应用》 CSCD 北大核心 2024年第18期114-125,共12页
遥感图像军事飞机检测在侦察预警、情报分析等领域具有重要意义。为使军事飞机检测模型能在算力受限的设备上高效运行,从网络设计与模型压缩两个方面对YOLOv8n进行轻量化改进。在网络设计方面,使用FAS_C2f替换原始主干网络中的C2f模块,... 遥感图像军事飞机检测在侦察预警、情报分析等领域具有重要意义。为使军事飞机检测模型能在算力受限的设备上高效运行,从网络设计与模型压缩两个方面对YOLOv8n进行轻量化改进。在网络设计方面,使用FAS_C2f替换原始主干网络中的C2f模块,减少计算冗余并加快网络特征提取的速度;根据军事飞机目标的尺度特征对网络结构进行优化,缓解因过度下采样导致的小目标信息丢失问题;使用Inner-SIoU作为新的定位回归损失函数,提升对小目标样本的学习能力并加快回归边界框的收敛。在模型压缩方面,使用基于LAMP分数的通道剪枝对重设计后的模型进行压缩,进一步减少参数和模型大小;并利用通道级知识蒸馏(channel-wise knowledge distillation,CWD)将模型精度恢复到接近剪枝前的水平。实验结果表明,在公开军用飞机数据集MAR20上,轻量化后的模型mAP为97.2%,体积仅有0.7 MB,较原始模型缩小了88.3%,FPS提高了14帧/s,满足军事飞机目标检测的实时性要求。 展开更多
关键词 目标检测 军事飞机 yolov8 模型剪枝 知识蒸馏
下载PDF
改进YOLOv8s与DeepSORT的矿工帽带检测及人员跟踪 被引量:2
14
作者 丁玲 缪小然 +2 位作者 胡建峰 赵作鹏 张新建 《计算机工程与应用》 CSCD 北大核心 2024年第5期328-335,共8页
不系帽带,安全帽等于没戴。然而现有的安全帽检测方法,缺乏对帽带异常佩戴的检测研究。针对此问题,结合煤矿井下特殊的作业环境,以人员安全帽帽带检测及人员跟踪为研究对象,提出了CM-YOLOv8s算法检测安全帽及其帽带,利用DeepSORT算法对... 不系帽带,安全帽等于没戴。然而现有的安全帽检测方法,缺乏对帽带异常佩戴的检测研究。针对此问题,结合煤矿井下特殊的作业环境,以人员安全帽帽带检测及人员跟踪为研究对象,提出了CM-YOLOv8s算法检测安全帽及其帽带,利用DeepSORT算法对未系帽带的作业人员进行跟踪。利用井下监控视频制作数据集,使用CM-YOLOv8s对井下人员安全帽帽带进行检测:在YOLOv8s的基础上引入更高分辨率的特征图并新增了一种级联查询机制,在不提高计算成本的前提下能完成对小物体更精准的检测。利用改进DeepSORT对人员进行编码追踪:采用更深层卷积替换DeepSORT中小型残差网络来强化外观信息提取能力。通过自制井下安全帽帽带检测及跟踪数据集对改进算法进行验证,实验结果表明:CM-YOLOv8s的安全帽帽带识别算法平均精度均值达到92.3%,较YOLOv8s提高4.2个百分点。此外,基于CM-YOLOv8s与DeepSORT的安全帽规范佩戴识别系统的平均准确率为85.37%,检测速度达到59 FPS。提出的安全帽帽带检测算法,通过检测帽带是否在人员下颚附近来鉴别安全帽是否规范佩戴,能较好地平衡检测速度与精度,并能适应复杂的井下环境。通过在陈四楼煤矿数月的应用表明,实现了对安全帽佩戴异常的监测预警,加强了对矿工规范佩戴安全帽的有效监管。 展开更多
关键词 安全帽 帽带检测 实时监测 yolov8 DeepSORT
下载PDF
基于改进YOLOv8的无人机航拍图像目标检测算法 被引量:7
15
作者 程换新 乔庆元 +1 位作者 骆晓玲 于沙家 《无线电工程》 2024年第4期871-881,共11页
针对现存无人机航拍图像目标检测算法检测精度较低、模型较为复杂的问题,提出一种改进YOLOv8的目标检测算法。在骨干网络引入多尺度注意力EMA,捕捉细节信息,以提高模型的特征提取能力;改进C2f模块,减小模型的计算量。提出了轻量级的Bi-Y... 针对现存无人机航拍图像目标检测算法检测精度较低、模型较为复杂的问题,提出一种改进YOLOv8的目标检测算法。在骨干网络引入多尺度注意力EMA,捕捉细节信息,以提高模型的特征提取能力;改进C2f模块,减小模型的计算量。提出了轻量级的Bi-YOLOv8特征金字塔网络结构改进YOLOv8的颈部,增强了模型多尺度特征融合能力,改善网络对小目标的检测精度。使用WIoU Loss优化原网络损失函数,引入一种动态非单调聚焦机制,提高模型的泛化能力。在无人机航拍数据集VisDrone2019上的实验表明,提出算法的mAP50为40.7%,较YOLOv8s提升了1.5%,参数量降低了42%,同时相比于其他先进的目标检测算法在精度和速度上均有提升,证明了改进算法的有效性和先进性。 展开更多
关键词 航拍图像 小目标检测 yolov8 Bi-yolov8 轻量化
下载PDF
基于改进YOLOv8的嵌入式道路裂缝检测算法 被引量:5
16
作者 耿焕同 刘振宇 +2 位作者 蒋骏 范子辰 李嘉兴 《计算机应用》 CSCD 北大核心 2024年第5期1613-1618,共6页
在边缘端设备部署YOLOv8L模型进行道路裂缝检测可以实现较高的精度,但难以保证实时检测。针对此问题,提出一种可部署到边缘计算设备Jetson AGX Xavier上的基于改进YOLOv8模型的目标检测算法。首先,利用部分卷积设计Faster Block结构以替... 在边缘端设备部署YOLOv8L模型进行道路裂缝检测可以实现较高的精度,但难以保证实时检测。针对此问题,提出一种可部署到边缘计算设备Jetson AGX Xavier上的基于改进YOLOv8模型的目标检测算法。首先,利用部分卷积设计Faster Block结构以替换YOLOv8 C2f模块中的Bottleneck结构,并将改进后的C2f模块记为C2f-Faster;其次,在YOLOv8主干网络中的每个C2f-Faster模块之后接一个SE(Squeeze-and-Excitation)通道注意力层,进一步提高检测的精度。在开源道路损害数据集RDD20(Road Damage Detection 20)上的实验结果表明:所提方法的平均F1得分为0.573,每秒检测帧数(FPS)为47,模型大小为55.5MB,相较于GRDDC2020(GlobalRoadDamageDetection Challenge 2020)的SOTA(State-Of-The-Art)模型,F1得分提高了0.8个百分点,FPS提高了291.7%,模型大小减小了41.8%,实现了在边缘设备上对道路裂缝实时且准确的检测。 展开更多
关键词 yolov8 目标检测 轻量化 注意力机制 道路裂缝
下载PDF
应用动态激活函数的轻量化YOLOv8行人检测算法 被引量:1
17
作者 王晓军 陈高宇 李晓航 《计算机工程与应用》 CSCD 北大核心 2024年第15期221-233,共13页
针对传统激活函数不能特异性匹配每张特征图以达到最好的激活效果,设计一种动态激活函数,为特征图上的每个像素值添加各自的偏移量,以达到更优的区分目标和背景的效果;为使模型更好地关注目标,在主干加入注意力机制,以提高模型的准确性... 针对传统激活函数不能特异性匹配每张特征图以达到最好的激活效果,设计一种动态激活函数,为特征图上的每个像素值添加各自的偏移量,以达到更优的区分目标和背景的效果;为使模型更好地关注目标,在主干加入注意力机制,以提高模型的准确性。针对需要监测行人流量和进行交通管理的场景,如闯红灯检测、自动驾驶等实时性高,硬件条件有限的场景,应用通道剪枝技术对模型低权重参数进行修剪,为适应硬件加速特性,改进了剪枝方法,使保留通道数始终为8的整数倍。在推理部署阶段,融合Conv和BatchNorm权重,进一步缩小模型,减少参数量和浮点运算量。最终实验表明,改进的模型性能比其他目标检测模型均有一定提升,其中,比YOLOv8原模型在AP0.5:0.95上提升了0.013,在AP0.5上提升了0.005,参数量减少了4.8×10~6。 展开更多
关键词 yolov8 行人检测 激活函数 剪枝 权重融合
下载PDF
基于改进YOLOv8n的轻量化茶叶嫩芽检测方法 被引量:1
18
作者 潘海鸿 陈希良 +2 位作者 钱广坤 申毅莉 陈琳 《电子测量技术》 北大核心 2024年第7期149-156,共8页
为解决自然环境下茶叶嫩芽检测场景复杂,模型参数量大无法在嵌入式设备部署等问题,提出一种基于改进YOLOv8n的轻量化茶叶嫩芽检测方法。构建一种MFBNet轻量化骨干网络,引入MBConv模块后大大减少了模型计算量。同时在骨干网中加入CBAM注... 为解决自然环境下茶叶嫩芽检测场景复杂,模型参数量大无法在嵌入式设备部署等问题,提出一种基于改进YOLOv8n的轻量化茶叶嫩芽检测方法。构建一种MFBNet轻量化骨干网络,引入MBConv模块后大大减少了模型计算量。同时在骨干网中加入CBAM注意力模块,抑制无效信息,提高了模型检测精度;其次引入AKConv模块对VoVGSCSPC结构进行改进,提出全新的AVCStem模块,并将其替换颈部网络的C2f模块,进一步减少模型参数,提升嵌入式设备部署效率;最后采用GSConv模块替换颈部网络结构中的全部Conv模块,帮助模型进行快速计算,提高茶叶嫩芽的检测速率。结果表明,本文提出的模型比YOLOv8n原模型的mAP50和FPS分别提升了3.5%、55.6%,参数量减少了14.3%,且模型鲁棒性强,满足复杂场景下茶叶嫩芽的轻量化快速检测。 展开更多
关键词 茶叶嫩芽检测 轻量化 注意力机制 深度学习 yolov8n
下载PDF
基于YOLOv8-OCR的井下人员检测算法 被引量:4
19
作者 倪云峰 霍洁 +2 位作者 侯颖 王静 郭苹 《无线电工程》 2024年第8期1847-1853,共7页
为提高井下昏暗环境的目标检测性能,将行人属性应用到井下,将反光号码牌贴在安全帽和工作服上作为属性进行识别。针对井下小目标检测率低的缺点,提出了一种将YOLOv8检测算法与光学字符识别(Optical Character Recognation, OCR)技术相... 为提高井下昏暗环境的目标检测性能,将行人属性应用到井下,将反光号码牌贴在安全帽和工作服上作为属性进行识别。针对井下小目标检测率低的缺点,提出了一种将YOLOv8检测算法与光学字符识别(Optical Character Recognation, OCR)技术相结合的方法。通过添加卷积块注意力模块(Convolutional Block Attention Module, CBAM),提高了网络对不同尺度的特征提取能力;将YOLOv8中的CBS模块改进为CBF模块,提高了目标的识别准确率;对检测到的反光号码牌区域用OCR技术对区域内数字进行识别,进一步提高了模型的检测精度。实验结果表明,提出的方法在自建数据集上获得了93.2%的识别准确率和每张24.4 ms的检测速度,相比YOLOv8模型有着更高的准确率,能够有效地应对井下环境中的光照变化和干扰因素并且满足实时检测的要求。 展开更多
关键词 目标检测 yolov8 光学字符识别 反光号码牌 注意力机制
下载PDF
改进YOLOv8的轻量化无人机目标检测算法 被引量:4
20
作者 胡峻峰 李柏聪 +1 位作者 朱昊 黄晓文 《计算机工程与应用》 CSCD 北大核心 2024年第8期182-191,共10页
针对无人机目标检测算法计算复杂难以部署,且长尾分布的无人机数据导致检测精度较低的问题,提出了基于改进YOLOv8的轻量化无人机目标检测算法(PC-YOLOv8-n),可均衡网络检测精度与计算量,并对长尾分布数据有一定泛化能力。使用部分卷积层... 针对无人机目标检测算法计算复杂难以部署,且长尾分布的无人机数据导致检测精度较低的问题,提出了基于改进YOLOv8的轻量化无人机目标检测算法(PC-YOLOv8-n),可均衡网络检测精度与计算量,并对长尾分布数据有一定泛化能力。使用部分卷积层(PConv)替换YOLOv8中的3×3卷积层,对网络进行轻量化处理,解决网络冗余和计算量复杂的问题;融合双通道特征金字塔,增加自上而下的路径,将深层信息与浅层信息进行融合,同层引入轻量化注意力机制,提升网络的特征提取能力;采用均衡焦点损失(EFL)作为类别损失函数,通过均衡尾部类别在网络训练时的梯度权重,增加网络的类别检测能力。实验结果表明,PC-YOLOv8-n在VisDrone2019数据集中具有良好的表现,在mAP50精度上比原始YOLOv8-n算法提高了1.6个百分点,同时模型的参数和计算量分别降低为2.6×10^(6)和7.6 GFLOPs,检测速度达到77.2 FPS。 展开更多
关键词 无人机 yolov8 长尾分布 目标检测 部分卷积
下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部