The influence of oxygen vacancy-dominated carrier mobility on the performance of memristors has attractedconsiderable attention.The device’s carrier mobility can be significantly improved by forming a nano-multilayer...The influence of oxygen vacancy-dominated carrier mobility on the performance of memristors has attractedconsiderable attention.The device’s carrier mobility can be significantly improved by forming a nano-multilayeredheterostructure when the individual layer thickness is below a critical value.In this work,Pt/[ZrO_(2):Y_(2)O_(3)(YSZ)/SrTiO_(3)(STO)]n/Nb:SrTiO_(3)(NSTO)memristive devices were configurated through laser pulse deposited YSZ/STO nanomultilayeredactive layer with both Pt and NSTO acting as top and counter electrodes.Specifically,the Pt/[YSZ/STO]5/NSTO device with five consecutive layers of YSZ/STO thin film shows superior memristor performance,and itscorresponding carrier mobility presents a significantly enhanced value compared to that of other periodic numbers ofYSZ/STO composed memristive devices.This can be attributed to the increase of oxygen vacancy concentration in thedevice,as evidenced by both experimental results and theoretical analysis.This work provides a significant approach inimproving the performance of memristor dominated by oxygen vacancy transporting mechanism.展开更多
基金Projects(2023JJ30690,2022JJ30722)supported by the Natural Science Foundation of Hunan Province,ChinaProject(kq2202093)supported by the Natural Science Foundation of Changsha,ChinaProject(SKL202202SIC)supported by the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure,China。
文摘The influence of oxygen vacancy-dominated carrier mobility on the performance of memristors has attractedconsiderable attention.The device’s carrier mobility can be significantly improved by forming a nano-multilayeredheterostructure when the individual layer thickness is below a critical value.In this work,Pt/[ZrO_(2):Y_(2)O_(3)(YSZ)/SrTiO_(3)(STO)]n/Nb:SrTiO_(3)(NSTO)memristive devices were configurated through laser pulse deposited YSZ/STO nanomultilayeredactive layer with both Pt and NSTO acting as top and counter electrodes.Specifically,the Pt/[YSZ/STO]5/NSTO device with five consecutive layers of YSZ/STO thin film shows superior memristor performance,and itscorresponding carrier mobility presents a significantly enhanced value compared to that of other periodic numbers ofYSZ/STO composed memristive devices.This can be attributed to the increase of oxygen vacancy concentration in thedevice,as evidenced by both experimental results and theoretical analysis.This work provides a significant approach inimproving the performance of memristor dominated by oxygen vacancy transporting mechanism.