Hardfacing materials containing YT758 hardmetal particles cemented by Cu-based alloy was deposited on the substrate to produce milling tools by oxy-acetylene flame process. Microstructure and wear properties of the ha...Hardfacing materials containing YT758 hardmetal particles cemented by Cu-based alloy was deposited on the substrate to produce milling tools by oxy-acetylene flame process. Microstructure and wear properties of the hardfacing layers were analyzed by scanning electron microscopy(SEM) and electron dispersion X-ray spectroscopy(EDXS) and wear test. The results show that inter-diffusion zone is found at the interface of YT758/CuZnNi, which promises to improve the bonding strength of YT758/CuZnNi. The wear resistance of YT758/CuZnNi hardfacing layers is higher than that of YG8/CuZnNi hardfacing layers. The working efficiency of the milling tools strengthened by YT758/CuZnNi is approximately 23 times higher than that strengthened by YG8/CuZnNi.展开更多
基金Project(Z2000F02) supported by the Natural Science Foundation of Shandong Province , China
文摘Hardfacing materials containing YT758 hardmetal particles cemented by Cu-based alloy was deposited on the substrate to produce milling tools by oxy-acetylene flame process. Microstructure and wear properties of the hardfacing layers were analyzed by scanning electron microscopy(SEM) and electron dispersion X-ray spectroscopy(EDXS) and wear test. The results show that inter-diffusion zone is found at the interface of YT758/CuZnNi, which promises to improve the bonding strength of YT758/CuZnNi. The wear resistance of YT758/CuZnNi hardfacing layers is higher than that of YG8/CuZnNi hardfacing layers. The working efficiency of the milling tools strengthened by YT758/CuZnNi is approximately 23 times higher than that strengthened by YG8/CuZnNi.