To study non-structural carbohydrate character-istics and nutrient utilization strategies of Pinus yunnanen-sis under continuous drought conditions,2-year-old seed-lings were planted in pots with appropriate water,lig...To study non-structural carbohydrate character-istics and nutrient utilization strategies of Pinus yunnanen-sis under continuous drought conditions,2-year-old seed-lings were planted in pots with appropriate water,light and moderate and severe drought treatments[(80±5),(65±5),(50±5),and(35±5)%of field water-holding capacity].Non-structural carbohydrates,carbon(C),nitrogen(N),and phosphorus(P)concentrations were measured in each plant component.The results show that:(1)With increasing drought,non-structural carbohydrates gradually increased in leaves,stems,and coarse roots,while gradually decreased in fine roots;(2)C concentrations of all were relatively stable under different stress levels.Phosphorous utilization of each component increased under light and moderate drought conditions,while N and P utilization efficiency of each plant component decreased under severe drought.Growth was mainly restricted by N,first decreasing and then increasing with increased drought;(3)There was a correlation between the levels of non-structural carbohydrates and C,N,and P in each component.Changes in N concentration affected the interconversion between soluble sugar and starch,which play a regulatory role in the fluctuation of the concentration of non-structural carbohydrates;and,(4)Plasticity analysis showed that P.yunnanensis seedlings responded to drought mainly by altering starch concentration,the ratio of soluble sugar to starch in leaves and stems,and further by alter-ing N and P utilization efficiencies.Overall,these results suggest that the physiological activities of all organs of P.yunnanensis seedlings are restricted under drought and that trade-offs exist between different physiological indicators and organs.Our findings are helpful in understanding non-structural carbohydrate and nutrient adaptation mechanisms under drought in P.yunnanensis seedlings.展开更多
Phenylalanine ammonia lyase(PAL)is the rate-limiting and pivotal enzyme of the general phenylpropanoid path-way,but few reports have been found on PAL genes in Pinus yunnanensis.In the present study,three PAL genes we...Phenylalanine ammonia lyase(PAL)is the rate-limiting and pivotal enzyme of the general phenylpropanoid path-way,but few reports have been found on PAL genes in Pinus yunnanensis.In the present study,three PAL genes were cloned and identified from P.yunnanensis seedlings for thefirst time,namely,PyPAL-1,PyPAL-2,and PyPAL-3.Our results indicated that the open-reading frames of PyPAL genes were 2184,2157,and 2385 bp.Phylogenetic tree analysis revealed that PyPALs have high homology with other known PAL genes in other plants.In vitro enzymatic analysis showed that all three PyPAL recombinant proteins could catalyze the deamination of L-phenylalanine to form trans-cinnamic acid,but only PAL1 and PAL2 can catalyze the conversion of L-tyrosine toρ-coumaric acid.Three PyPAL genes were expressed in different tissues in 1-year-old P.yunnanensis,and such genes had different expression patterns.This study lays a foundation for further understanding of the biosynthesis of secondary metabolites in P.yunnanensis.展开更多
A high taxol yield cell line of Taxus yunnanensis Cheng et L. K. Fu keeps a high taxol_producing level after successive subcultures for more than eight years. In this study, eight taxanes were isolated from the su...A high taxol yield cell line of Taxus yunnanensis Cheng et L. K. Fu keeps a high taxol_producing level after successive subcultures for more than eight years. In this study, eight taxanes were isolated from the suspension cell cultures of this cell line. Based on NMR and MS analyses, and comparison with literature data and standards, their structures were determined to be 2α,5α,10β_triacetoxy_14β_propionyloxy_4(20),11_taxadiene (1), 2α,5α,10β_triacetoxy_14β_(2′_methyl)_butyryloxy_4(20),11_taxadiene (2), 2α,5α,10β_14β_tetra_acetoxy_4 (20),11_taxadiene (3, taxuyunnanine C), 2α,5α,10β_triacetoxy_14β_(2′_methyl_3′_hydroxy)_butyryloxy_4(20),11_taxadiene (4, yunnanxane) and its 3′_epimer (5), baccatin Ⅳ (6), baccatin Ⅲ (7) and taxol (8), respectively. Among those compounds, 3, 5, 6 and 7 were reported to be isolated from the suspension cell cultures of T. yunnanensis for the first time. TLC and HPLC analyses indicated that the chemical constituents of the culture solution were similar to those of cultured cells. Moreover, the highest taxol content of this cell line reached 0.3% and the cell line could be applied for a large_scale culture.展开更多
Two new sterols, 3 beta, 7 alpha, 16 beta -trihydroxy-stigmast-5,22-diene (1), 3 beta, 7 alpha, 16 beta -trihydroxy-stigmast-5-ene (2), were isolated together with six known compounds, ergosta-5, 24(28)-dien-3 beta, 7...Two new sterols, 3 beta, 7 alpha, 16 beta -trihydroxy-stigmast-5,22-diene (1), 3 beta, 7 alpha, 16 beta -trihydroxy-stigmast-5-ene (2), were isolated together with six known compounds, ergosta-5, 24(28)-dien-3 beta, 7 alpha -diol (3), ergosta-5,24(28)-dien-3 beta, 7 beta, 16 beta -triol (4), beta -amyrone (5), beta -amyrin (6), 11 alpha, 12 alpha -epoxy-14-taraxeren-3-one (7), and 6-guaiene-4 alpha, 10 alpha -diol (8) from the EtOH extract of the bark of Amoora yunnanensis (H. L. Li) C. Y. Wu. Their structures were deduced on the basis of spectral data.展开更多
[Objective] In order to identify and comparatively study leaves of ethnic medicine Gaultheria yunnanensis from different regions of Guizhou.[Method] Characteristics,microscopic,physical and chemical identification wer...[Objective] In order to identify and comparatively study leaves of ethnic medicine Gaultheria yunnanensis from different regions of Guizhou.[Method] Characteristics,microscopic,physical and chemical identification were studied on Gaultheria yunnanensis.[Result] There was no obvious difference in characteristics and microscopic sections among Gaultheria yunnanensis leaves from different regions.Blue fluorescence spots were observed clearly by TLC(Thin Layer Chromatography) test.[Conclusion]The study provided a basis for improvement of the quality standard of the Gaultheria yunnanensis.展开更多
[ Objective ] With Cupressustorulosa, Cinnamomum camphora and Cyclobalanopsis Oerst as test materials, the paper studied the effects of different non- host plants on olfactory responses of Tomicus yunnanensis. [ Metho...[ Objective ] With Cupressustorulosa, Cinnamomum camphora and Cyclobalanopsis Oerst as test materials, the paper studied the effects of different non- host plants on olfactory responses of Tomicus yunnanensis. [ Method ] The needles of Pinus yunnanensis were mixed with the leaves of Cupressustondosa, C. cam- phora and C. Oerst according to the ratios of 0 g : 6 g, 1 g : 5 g, 2 g : 4 g, 3 g : 3 g, 4 g : 2 g, 5 g : 1 g and 6 g : 0 g, and the mixtures were put in the re- spanse arm of Y-tube olfactometer as odor source to observe the olfactory behavior of T. yunnanensis, the empty arm was set as control. [ Result ] When the needles of P. yunnanensis were mixed with the leaves of non-hest plants according to the ratio of 1 g : 5 g and 2 g : 4 g, they had less difference on attractive rate to T. yun- nanensis compared with complete P. yunnanensis needles in mixture (ratio: 6 g : 0 g), and the maximum difference was 14%. When the needles ofP. yunnanen- sis were mixed with non-host leaves according to the ratio of 1 g : 5 g, 2 g : 4 g, the attractive rate to T. yunnanensis decreased compared with complete P. yun- nanensis needles in mixture ( ratio: 6 g : 0 g), and the decrease value in maximum was 40%. [ Conclusion] When the ratio of non-host plants was relatively small in mixed leaves, non-host had less impact on olfactory responses of T. yunnanensis. As the proportion of non-hest leaves gradually increased, the attractive rate of leaf mixtures to T. yunnanensis was gradually small. The results could provide reference for determination of mixed ratio in construction of mixed forest and the de- velopment of botanical attractive and repellent of T. yunnanensis.展开更多
[Objective] This study aimed to isolate the endophytic fungi of Paris polyphylla var. yunnanensis and investigate their effects on the embryo development of P. polyphylla var. yunnanensis seeds. [Method] The endophyti...[Objective] This study aimed to isolate the endophytic fungi of Paris polyphylla var. yunnanensis and investigate their effects on the embryo development of P. polyphylla var. yunnanensis seeds. [Method] The endophytic fungi of P. polyphylla were isolated and identified morphologically, and their effects on the embryo development of P. polyphylla var. yunnanensis seeds were studied by using paraffin sectioning and microphotography. [Result] Nine endophytic fungi, i.e. P. polyphylla var. yunnanensis endophytic fungi PPYEF-1, PPYEF-2, PPYEF-3, PPYEF-4, PPYEF-5, PPYEF-6, PPYEF-7, PPYEF-8 and PPYEF-9 belonging to seven genera in five families, three orders were isolated from the rhizomes. Except PPYEF-4 (Cladosporium sp.), other fungi could promote the embryo development of the P. polyphylla var. yunnanensis seeds, mostly reaching the extremely significant or significant level. PPYEF-9 (Trichoderma sp.) resulted in the highest embryo length and embryo-emerging ratio. [Conclusion] This paper could provide a reference for the application of the endophytic fungi of P. polyphylla var. yunnanensis in the dormancy-breaking of P. polyphylla var. yunnanensis seeds.展开更多
A new macrocyclic diamide, 22-membered macrocyclic diamide, named cyclodicaprylamide(2), and five known compounds, bis(2-ethylhexyl) phthalate(1), ethyl 3,4,5-trimethoxybenzoate(3), ethyl 3,4,5-trimethoxycinna...A new macrocyclic diamide, 22-membered macrocyclic diamide, named cyclodicaprylamide(2), and five known compounds, bis(2-ethylhexyl) phthalate(1), ethyl 3,4,5-trimethoxybenzoate(3), ethyl 3,4,5-trimethoxycinnamate (4), (+)-syringaresinol(5), loliolide(6), were isolated from the roots of Rauvolfia yunnanensis Tsiang. Their structures were elucidated based on NMR, 2D NMR, and MS spectrum, respectively. They were obtained from it for the first time.展开更多
A novel phenylpropanoid glycosides 1, named parispolyside E and a novel derivation of phenolic glycoside 2, named parispolyside G, as well as two known flavonoid glycosides were isolated from the rhizome of Paris poly...A novel phenylpropanoid glycosides 1, named parispolyside E and a novel derivation of phenolic glycoside 2, named parispolyside G, as well as two known flavonoid glycosides were isolated from the rhizome of Paris polyphylla var. yunnanensis. Their structures were elucidaed by spectroscopic methods.展开更多
Paris polyphylla Smith var.yunnanensis(Franch.) Hand.-Mazz.is a rhizomatous,herbaceous,perennial plant that has been used for more than a thousand years in traditional Chinese medicine.It is facing extinction due to o...Paris polyphylla Smith var.yunnanensis(Franch.) Hand.-Mazz.is a rhizomatous,herbaceous,perennial plant that has been used for more than a thousand years in traditional Chinese medicine.It is facing extinction due to overharvesting.Steroids are the major therapeutic components in Paris roots,the commercial value of which increases with age.To date,no genomic data on the species have been available.In this study,transcriptome analysis of an 8-year-old root and a 4-year-old root provided insight into the metabolic pathways that generate the steroids.Using Illumina sequencing technology,we generated a high-quality sequence and demonstrated de novo assembly and annotation of genes in the absence of prior genome information.Approximately 87,577 unique sequences,with an average length of 614 bases,were obtained from the root cells.Using bioinformatics methods,we annotated approximately 65.51% of the unique sequences by conducting a similarity search with known genes in the National Center for Biotechnology Information's non-redundant database.The unique transcripts were functionally classified using the Gene Ontology hierarchy and the Kyoto Encyclopedia of Genes and Genomes database.Of 3082 genes that were identified as significantly differentially expressed between roots of different ages,1518(49.25%) were upregulated and 1564(50.75%) were downregulated in the older root.Metabolic pathway analysis predicted that 25 unigenes were responsible for the biosynthesis of the saponins steroids.These data represent a valuable resource for future genomic studies on this endangered species and will be valuable for efforts to genetically engineer P.polyphylla and facilitate saponin-rich plant development.展开更多
Paris polyphylla var. yunnanensis is an important medicinal plant with abundant saponins that are widely used in the pharmaceuticals industry. It is unclear why the levels of active ingredients increase as these plant...Paris polyphylla var. yunnanensis is an important medicinal plant with abundant saponins that are widely used in the pharmaceuticals industry. It is unclear why the levels of active ingredients increase as these plants age. We speculated that the concentrations of those components in the rhizomes are mediated by fungal endophytes. To test this hypothesis, we took both culture-dependent and-independent(metagenomics) approaches to analyze the communities of endophytic fungi that inhabit those rhizomes in plants of different age classes(four, six, and eight years old). In all, 147 isolates representing 18 fungal taxa were obtained from 270 segments(90 per age class). Based on morphological and genetic characteristics, Fusarium oxysporum(46.55% frequency of occurrence) was the predominant endophyte,followed by Leptodontidium sp.(8.66%) and Trichoderma viride(6.81%). Colonization of endophytic fungi was maximized in the eight-year-old rhizomes(33.33%) when compared with four-year-old(21.21%) and six-year-old(15.15%) rhizomes. Certain fungal species were present only at particular ages. For example,Alternaria sp., Cylindrocarpon sp., Chaetomium sp., Paraphaeosphaeria sporulosa, Pyrenochaeta sp., Penicillium swiecickii, T. viride, and Truncatella angustata were found only in the oldest plants. Analysis of(metagenomics) community DNA extracted from different-aged samples revealed that, at the class level,the majority of fungi had the highest sequence similarity to members of Sordariomycetes, followed by Eurotiomycetes and Saccharomycetes. These results were mostly in accord with those we obtained using culture methods. Fungal diversity and richness also changed over time. Our investigation is the first to show that the diversity of fungi in rhizomes of P. polyphylla var. yunnanensis is altered as plants age, and our findings provide a foundation for future examinations of useful compounds.展开更多
基金This study was supported by the National Natural Science Foundation of China(31960306).
文摘To study non-structural carbohydrate character-istics and nutrient utilization strategies of Pinus yunnanen-sis under continuous drought conditions,2-year-old seed-lings were planted in pots with appropriate water,light and moderate and severe drought treatments[(80±5),(65±5),(50±5),and(35±5)%of field water-holding capacity].Non-structural carbohydrates,carbon(C),nitrogen(N),and phosphorus(P)concentrations were measured in each plant component.The results show that:(1)With increasing drought,non-structural carbohydrates gradually increased in leaves,stems,and coarse roots,while gradually decreased in fine roots;(2)C concentrations of all were relatively stable under different stress levels.Phosphorous utilization of each component increased under light and moderate drought conditions,while N and P utilization efficiency of each plant component decreased under severe drought.Growth was mainly restricted by N,first decreasing and then increasing with increased drought;(3)There was a correlation between the levels of non-structural carbohydrates and C,N,and P in each component.Changes in N concentration affected the interconversion between soluble sugar and starch,which play a regulatory role in the fluctuation of the concentration of non-structural carbohydrates;and,(4)Plasticity analysis showed that P.yunnanensis seedlings responded to drought mainly by altering starch concentration,the ratio of soluble sugar to starch in leaves and stems,and further by alter-ing N and P utilization efficiencies.Overall,these results suggest that the physiological activities of all organs of P.yunnanensis seedlings are restricted under drought and that trade-offs exist between different physiological indicators and organs.Our findings are helpful in understanding non-structural carbohydrate and nutrient adaptation mechanisms under drought in P.yunnanensis seedlings.
基金This study received financial support from the Youth Talents Special Project of Yunnan Province,“Xingdian Talents Support Program”(XDYC-QNRC-2022-0203)Southwest Forestry University Scientific Research Start-Up Funds(112116).
文摘Phenylalanine ammonia lyase(PAL)is the rate-limiting and pivotal enzyme of the general phenylpropanoid path-way,but few reports have been found on PAL genes in Pinus yunnanensis.In the present study,three PAL genes were cloned and identified from P.yunnanensis seedlings for thefirst time,namely,PyPAL-1,PyPAL-2,and PyPAL-3.Our results indicated that the open-reading frames of PyPAL genes were 2184,2157,and 2385 bp.Phylogenetic tree analysis revealed that PyPALs have high homology with other known PAL genes in other plants.In vitro enzymatic analysis showed that all three PyPAL recombinant proteins could catalyze the deamination of L-phenylalanine to form trans-cinnamic acid,but only PAL1 and PAL2 can catalyze the conversion of L-tyrosine toρ-coumaric acid.Three PyPAL genes were expressed in different tissues in 1-year-old P.yunnanensis,and such genes had different expression patterns.This study lays a foundation for further understanding of the biosynthesis of secondary metabolites in P.yunnanensis.
文摘A high taxol yield cell line of Taxus yunnanensis Cheng et L. K. Fu keeps a high taxol_producing level after successive subcultures for more than eight years. In this study, eight taxanes were isolated from the suspension cell cultures of this cell line. Based on NMR and MS analyses, and comparison with literature data and standards, their structures were determined to be 2α,5α,10β_triacetoxy_14β_propionyloxy_4(20),11_taxadiene (1), 2α,5α,10β_triacetoxy_14β_(2′_methyl)_butyryloxy_4(20),11_taxadiene (2), 2α,5α,10β_14β_tetra_acetoxy_4 (20),11_taxadiene (3, taxuyunnanine C), 2α,5α,10β_triacetoxy_14β_(2′_methyl_3′_hydroxy)_butyryloxy_4(20),11_taxadiene (4, yunnanxane) and its 3′_epimer (5), baccatin Ⅳ (6), baccatin Ⅲ (7) and taxol (8), respectively. Among those compounds, 3, 5, 6 and 7 were reported to be isolated from the suspension cell cultures of T. yunnanensis for the first time. TLC and HPLC analyses indicated that the chemical constituents of the culture solution were similar to those of cultured cells. Moreover, the highest taxol content of this cell line reached 0.3% and the cell line could be applied for a large_scale culture.
文摘Two new sterols, 3 beta, 7 alpha, 16 beta -trihydroxy-stigmast-5,22-diene (1), 3 beta, 7 alpha, 16 beta -trihydroxy-stigmast-5-ene (2), were isolated together with six known compounds, ergosta-5, 24(28)-dien-3 beta, 7 alpha -diol (3), ergosta-5,24(28)-dien-3 beta, 7 beta, 16 beta -triol (4), beta -amyrone (5), beta -amyrin (6), 11 alpha, 12 alpha -epoxy-14-taraxeren-3-one (7), and 6-guaiene-4 alpha, 10 alpha -diol (8) from the EtOH extract of the bark of Amoora yunnanensis (H. L. Li) C. Y. Wu. Their structures were deduced on the basis of spectral data.
基金Supported by Nature Science Research Project of Education Depart-ment of Guizhou Province ([2009]0009)Graduate Education In-novation Project of Guiyang College of Traditional Chinese Medicine(ZYYCX10023)~~
文摘[Objective] In order to identify and comparatively study leaves of ethnic medicine Gaultheria yunnanensis from different regions of Guizhou.[Method] Characteristics,microscopic,physical and chemical identification were studied on Gaultheria yunnanensis.[Result] There was no obvious difference in characteristics and microscopic sections among Gaultheria yunnanensis leaves from different regions.Blue fluorescence spots were observed clearly by TLC(Thin Layer Chromatography) test.[Conclusion]The study provided a basis for improvement of the quality standard of the Gaultheria yunnanensis.
基金Supported by 948 Project of State Forestry Administration(2009-4-38)~~
文摘[ Objective ] With Cupressustorulosa, Cinnamomum camphora and Cyclobalanopsis Oerst as test materials, the paper studied the effects of different non- host plants on olfactory responses of Tomicus yunnanensis. [ Method ] The needles of Pinus yunnanensis were mixed with the leaves of Cupressustondosa, C. cam- phora and C. Oerst according to the ratios of 0 g : 6 g, 1 g : 5 g, 2 g : 4 g, 3 g : 3 g, 4 g : 2 g, 5 g : 1 g and 6 g : 0 g, and the mixtures were put in the re- spanse arm of Y-tube olfactometer as odor source to observe the olfactory behavior of T. yunnanensis, the empty arm was set as control. [ Result ] When the needles of P. yunnanensis were mixed with the leaves of non-hest plants according to the ratio of 1 g : 5 g and 2 g : 4 g, they had less difference on attractive rate to T. yun- nanensis compared with complete P. yunnanensis needles in mixture (ratio: 6 g : 0 g), and the maximum difference was 14%. When the needles ofP. yunnanen- sis were mixed with non-host leaves according to the ratio of 1 g : 5 g, 2 g : 4 g, the attractive rate to T. yunnanensis decreased compared with complete P. yun- nanensis needles in mixture ( ratio: 6 g : 0 g), and the decrease value in maximum was 40%. [ Conclusion] When the ratio of non-host plants was relatively small in mixed leaves, non-host had less impact on olfactory responses of T. yunnanensis. As the proportion of non-hest leaves gradually increased, the attractive rate of leaf mixtures to T. yunnanensis was gradually small. The results could provide reference for determination of mixed ratio in construction of mixed forest and the de- velopment of botanical attractive and repellent of T. yunnanensis.
文摘[Objective] This study aimed to isolate the endophytic fungi of Paris polyphylla var. yunnanensis and investigate their effects on the embryo development of P. polyphylla var. yunnanensis seeds. [Method] The endophytic fungi of P. polyphylla were isolated and identified morphologically, and their effects on the embryo development of P. polyphylla var. yunnanensis seeds were studied by using paraffin sectioning and microphotography. [Result] Nine endophytic fungi, i.e. P. polyphylla var. yunnanensis endophytic fungi PPYEF-1, PPYEF-2, PPYEF-3, PPYEF-4, PPYEF-5, PPYEF-6, PPYEF-7, PPYEF-8 and PPYEF-9 belonging to seven genera in five families, three orders were isolated from the rhizomes. Except PPYEF-4 (Cladosporium sp.), other fungi could promote the embryo development of the P. polyphylla var. yunnanensis seeds, mostly reaching the extremely significant or significant level. PPYEF-9 (Trichoderma sp.) resulted in the highest embryo length and embryo-emerging ratio. [Conclusion] This paper could provide a reference for the application of the endophytic fungi of P. polyphylla var. yunnanensis in the dormancy-breaking of P. polyphylla var. yunnanensis seeds.
基金the Natural Science Foundation of Yunnan Province, China(No.2006C0010Z).
文摘A new macrocyclic diamide, 22-membered macrocyclic diamide, named cyclodicaprylamide(2), and five known compounds, bis(2-ethylhexyl) phthalate(1), ethyl 3,4,5-trimethoxybenzoate(3), ethyl 3,4,5-trimethoxycinnamate (4), (+)-syringaresinol(5), loliolide(6), were isolated from the roots of Rauvolfia yunnanensis Tsiang. Their structures were elucidated based on NMR, 2D NMR, and MS spectrum, respectively. They were obtained from it for the first time.
文摘A novel phenylpropanoid glycosides 1, named parispolyside E and a novel derivation of phenolic glycoside 2, named parispolyside G, as well as two known flavonoid glycosides were isolated from the rhizome of Paris polyphylla var. yunnanensis. Their structures were elucidaed by spectroscopic methods.
基金supported by the National Natural Science Foundation of China(81473310,31260075,31560085)
文摘Paris polyphylla Smith var.yunnanensis(Franch.) Hand.-Mazz.is a rhizomatous,herbaceous,perennial plant that has been used for more than a thousand years in traditional Chinese medicine.It is facing extinction due to overharvesting.Steroids are the major therapeutic components in Paris roots,the commercial value of which increases with age.To date,no genomic data on the species have been available.In this study,transcriptome analysis of an 8-year-old root and a 4-year-old root provided insight into the metabolic pathways that generate the steroids.Using Illumina sequencing technology,we generated a high-quality sequence and demonstrated de novo assembly and annotation of genes in the absence of prior genome information.Approximately 87,577 unique sequences,with an average length of 614 bases,were obtained from the root cells.Using bioinformatics methods,we annotated approximately 65.51% of the unique sequences by conducting a similarity search with known genes in the National Center for Biotechnology Information's non-redundant database.The unique transcripts were functionally classified using the Gene Ontology hierarchy and the Kyoto Encyclopedia of Genes and Genomes database.Of 3082 genes that were identified as significantly differentially expressed between roots of different ages,1518(49.25%) were upregulated and 1564(50.75%) were downregulated in the older root.Metabolic pathway analysis predicted that 25 unigenes were responsible for the biosynthesis of the saponins steroids.These data represent a valuable resource for future genomic studies on this endangered species and will be valuable for efforts to genetically engineer P.polyphylla and facilitate saponin-rich plant development.
基金supported by grants from the National Natural Science Foundation of China (81473310, 31260075, 31560085)
文摘Paris polyphylla var. yunnanensis is an important medicinal plant with abundant saponins that are widely used in the pharmaceuticals industry. It is unclear why the levels of active ingredients increase as these plants age. We speculated that the concentrations of those components in the rhizomes are mediated by fungal endophytes. To test this hypothesis, we took both culture-dependent and-independent(metagenomics) approaches to analyze the communities of endophytic fungi that inhabit those rhizomes in plants of different age classes(four, six, and eight years old). In all, 147 isolates representing 18 fungal taxa were obtained from 270 segments(90 per age class). Based on morphological and genetic characteristics, Fusarium oxysporum(46.55% frequency of occurrence) was the predominant endophyte,followed by Leptodontidium sp.(8.66%) and Trichoderma viride(6.81%). Colonization of endophytic fungi was maximized in the eight-year-old rhizomes(33.33%) when compared with four-year-old(21.21%) and six-year-old(15.15%) rhizomes. Certain fungal species were present only at particular ages. For example,Alternaria sp., Cylindrocarpon sp., Chaetomium sp., Paraphaeosphaeria sporulosa, Pyrenochaeta sp., Penicillium swiecickii, T. viride, and Truncatella angustata were found only in the oldest plants. Analysis of(metagenomics) community DNA extracted from different-aged samples revealed that, at the class level,the majority of fungi had the highest sequence similarity to members of Sordariomycetes, followed by Eurotiomycetes and Saccharomycetes. These results were mostly in accord with those we obtained using culture methods. Fungal diversity and richness also changed over time. Our investigation is the first to show that the diversity of fungi in rhizomes of P. polyphylla var. yunnanensis is altered as plants age, and our findings provide a foundation for future examinations of useful compounds.