We present a single-longitudinal-mode continuous-wave Ho^3+:YVO4 laser at 2.05 μm pumped by a Tm-doped fibre laser. Use of a cavity etalon enables spectral selectivity for single-mode operation. The highest power a...We present a single-longitudinal-mode continuous-wave Ho^3+:YVO4 laser at 2.05 μm pumped by a Tm-doped fibre laser. Use of a cavity etalon enables spectral selectivity for single-mode operation. The highest power achieved in the single longitudinal mode at 2052.5 nm is 282 mW at a slope efficiency of 6.9%, corresponding to an optical conversion efficiency of 3.0%. These features demonstrate that this single-longitudinal-mode Ho:YVO4 laser is suitable for use as a seed laser in some Lidar systems(e.g., coherent Lidar or differential absorption Lidar). To the best of our knowledge, this is the first report on such a single-longitudinal-mode Ho:YVO4 laser at 2.05 μm.展开更多
A black phosphorus (BP) saturable absorber (SA) solution with different concentrations (1.0 and 0.5 mg/ml) is fabricated with the liquid-phase exfoliation method. By using the BP-SA, a compact diode-pumped passively Q...A black phosphorus (BP) saturable absorber (SA) solution with different concentrations (1.0 and 0.5 mg/ml) is fabricated with the liquid-phase exfoliation method. By using the BP-SA, a compact diode-pumped passively Q-switched Nd:YVO4 laser is demonstrated. One reflecting Bragg gratings is used as the output coupler for mode selection. By inserting those BP-SA solutions in the laser cavity, the maximum single longitude mode, Q-switched output powers of 126mW at 692.5 kHz and 149mW at 630.3 kHz are achieved at the pump power of 8.0 W, corresponding to the pulse durations of 144 ns and 196 ns, respectively. Moreover, longitudinal-mode characteristics of Q-switched output laser in different optical cavity lengths based on two-kind BP-SA solution concentrations are investigated. Our results show that BP-SA could also be developed as an effective SA for the Q-switched, single longitudinal mode pulse laser.展开更多
A Kerr-lens, mode-locked YVO4∕Nd:YVO4laser coupled with an acousto-optic modulator(AOM) Q-switching near1064 nm was employed to pump an intracavity KTi OPO4(KTP) optical parametric oscillator. A subnanosecond sig...A Kerr-lens, mode-locked YVO4∕Nd:YVO4laser coupled with an acousto-optic modulator(AOM) Q-switching near1064 nm was employed to pump an intracavity KTi OPO4(KTP) optical parametric oscillator. A subnanosecond signal wave near 1572 nm with low repetition rate was realized. At an AOM repetition rate of 8 kHz, the maximum output power was 165 mW. The highest average pulse energy, the shortest duration, and the highest peak power of a mode-locking signal pulse were estimated to be ~10.3 μJ, ~120 ps, and ~82 kW, respectively.展开更多
A diode-pumped actively Q-switched Raman laser is demonstrated, with YV04 employed as Raman active medium, based on a ceramic Nd:YAG laser operating at 1444nm. The first-stokes Raman generation at 1657nm is achieved....A diode-pumped actively Q-switched Raman laser is demonstrated, with YV04 employed as Raman active medium, based on a ceramic Nd:YAG laser operating at 1444nm. The first-stokes Raman generation at 1657nm is achieved. A maximum output power of as high as 612mW is obtained under a pump power of 20. 7 W and at a pulse repetition frequency rate of 20kHz, corresponding to an optical-to-optical conversion efficiency of 3%.展开更多
A high power Nd:YAG end-pumped slab amplifier chain with a Nd:YVO4 innoslab laser as the master oscillator is demonstrated. A chain output power of 5210 W with beam quality of 4 times the diffraction limit is achiev...A high power Nd:YAG end-pumped slab amplifier chain with a Nd:YVO4 innoslab laser as the master oscillator is demonstrated. A chain output power of 5210 W with beam quality of 4 times the diffraction limit is achieved by double-passing the first amplifier stage and single-passing the second stage with an optical efficiency of 29% while working at a frequency of 1kHz and pulse width of 200 μs.展开更多
The thermal effect and the heat generation in diode-end-pumped continuous-wave 914-nm Nd:YVO4 lasers are investigated in detail. A theoretical model of a diode end-pumped solid-state laser is constructed to analyse t...The thermal effect and the heat generation in diode-end-pumped continuous-wave 914-nm Nd:YVO4 lasers are investigated in detail. A theoretical model of a diode end-pumped solid-state laser is constructed to analyse the influence of fractional thermal loading on the thermal effect in the Nd:YVO4 laser based on finite element analysis. The thermal focal lengths and the end-surface deformations of laser rods in Nd:YVO4 quasi-three-level and four-level lasers are measured and compared with the results obtained by ordinary interferometry for the demonstration of higher thermal loading in 914-nm laser. Finally the fractional thermal loading in the Nd:YVO4 quasi-three-level laser is calculated by matching the experimental and the simulated end deformations.展开更多
A passively Q-switched Nd:YVO4 laser at 1064 nm is demonstrated based on a gold nanotriangle saturable absorber(GNT SA).Under a pump power of 3.82 W,the maximum average output power of 218mW is achieved,correspondi...A passively Q-switched Nd:YVO4 laser at 1064 nm is demonstrated based on a gold nanotriangle saturable absorber(GNT SA).Under a pump power of 3.82 W,the maximum average output power of 218mW is achieved,corresponding to a slope efficiency of 12.9%.The minimum pulse width is 165ns and the maximum pulse repetition rate is 300kHz at the pump power of 3.48 W.Our results prove that the GNT SA is a promising saturable absorber for near-infrared lasers.展开更多
We realize a stable self-starting passively mode-locking all-solid-state laser by using novel GaAs mirrors as the absorber and output coupler. The GaAs mirror is grown by the technology of metal organic chemical vapou...We realize a stable self-starting passively mode-locking all-solid-state laser by using novel GaAs mirrors as the absorber and output coupler. The GaAs mirror is grown by the technology of metal organic chemical vapour deposition at low temperature. With such an absorber as the output coupler in the laser resonator, laser pulses with duration of 42ps were generated at a repetition rate of 400MHz, corresponding to the average power of 590mW.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61308009 and 61405047)the China Postdoctoral Science Foundation(Grant Nos.2016T90287 and 2015M570290)+1 种基金the Fundamental Research Funds for the Central Universities of China(Grant No.HIT.NSRIF.2015042)the Postdoctoral Science Foundation of Heilongjiang Province,China(Grant No.LBH-Z14085)
文摘We present a single-longitudinal-mode continuous-wave Ho^3+:YVO4 laser at 2.05 μm pumped by a Tm-doped fibre laser. Use of a cavity etalon enables spectral selectivity for single-mode operation. The highest power achieved in the single longitudinal mode at 2052.5 nm is 282 mW at a slope efficiency of 6.9%, corresponding to an optical conversion efficiency of 3.0%. These features demonstrate that this single-longitudinal-mode Ho:YVO4 laser is suitable for use as a seed laser in some Lidar systems(e.g., coherent Lidar or differential absorption Lidar). To the best of our knowledge, this is the first report on such a single-longitudinal-mode Ho:YVO4 laser at 2.05 μm.
基金Supported by West Young Scholar Foundation of the Chinese Academy of Sciences under Grant No XAB2015B27
文摘A black phosphorus (BP) saturable absorber (SA) solution with different concentrations (1.0 and 0.5 mg/ml) is fabricated with the liquid-phase exfoliation method. By using the BP-SA, a compact diode-pumped passively Q-switched Nd:YVO4 laser is demonstrated. One reflecting Bragg gratings is used as the output coupler for mode selection. By inserting those BP-SA solutions in the laser cavity, the maximum single longitude mode, Q-switched output powers of 126mW at 692.5 kHz and 149mW at 630.3 kHz are achieved at the pump power of 8.0 W, corresponding to the pulse durations of 144 ns and 196 ns, respectively. Moreover, longitudinal-mode characteristics of Q-switched output laser in different optical cavity lengths based on two-kind BP-SA solution concentrations are investigated. Our results show that BP-SA could also be developed as an effective SA for the Q-switched, single longitudinal mode pulse laser.
基金supported by the National Natural Science Foundation of China (61378022)the National Natural Science Foundation of China for Youths (61205145)+2 种基金the Fundamental Research Funds of Shandong University (2014JC032)the China Postdoctoral Science Foundation (2013M541901)Independent Innovation Foundation of Shandong University, IIFSDU (2013HW013 and 2014TB011)
文摘A Kerr-lens, mode-locked YVO4∕Nd:YVO4laser coupled with an acousto-optic modulator(AOM) Q-switching near1064 nm was employed to pump an intracavity KTi OPO4(KTP) optical parametric oscillator. A subnanosecond signal wave near 1572 nm with low repetition rate was realized. At an AOM repetition rate of 8 kHz, the maximum output power was 165 mW. The highest average pulse energy, the shortest duration, and the highest peak power of a mode-locking signal pulse were estimated to be ~10.3 μJ, ~120 ps, and ~82 kW, respectively.
基金Supported by the Foundation of the State Key Laboratory of Crystal Material of Shandong University under Grant No KF1101the Foundation of Shandong University under Grant No 1170072613176+2 种基金the National Natural Science Foundation of China under Grant Nos 11004122 and 11204160the Special Grade of China Postdoctoral Science Foundation under Grant No 201104627the Independent Innovation Foundation of Shandong University under Grant No 2011GN058
文摘A diode-pumped actively Q-switched Raman laser is demonstrated, with YV04 employed as Raman active medium, based on a ceramic Nd:YAG laser operating at 1444nm. The first-stokes Raman generation at 1657nm is achieved. A maximum output power of as high as 612mW is obtained under a pump power of 20. 7 W and at a pulse repetition frequency rate of 20kHz, corresponding to an optical-to-optical conversion efficiency of 3%.
文摘A high power Nd:YAG end-pumped slab amplifier chain with a Nd:YVO4 innoslab laser as the master oscillator is demonstrated. A chain output power of 5210 W with beam quality of 4 times the diffraction limit is achieved by double-passing the first amplifier stage and single-passing the second stage with an optical efficiency of 29% while working at a frequency of 1kHz and pulse width of 200 μs.
基金supported by the National Natural Science Foundation of China (Grant No.60978016)the Technological Project of Heilongjiang Province,China (Grant No.GC06A116)the Fundamental Research Funds for the Central Universities,China (Grant No.HIT.NSRIF.201165)
文摘The thermal effect and the heat generation in diode-end-pumped continuous-wave 914-nm Nd:YVO4 lasers are investigated in detail. A theoretical model of a diode end-pumped solid-state laser is constructed to analyse the influence of fractional thermal loading on the thermal effect in the Nd:YVO4 laser based on finite element analysis. The thermal focal lengths and the end-surface deformations of laser rods in Nd:YVO4 quasi-three-level and four-level lasers are measured and compared with the results obtained by ordinary interferometry for the demonstration of higher thermal loading in 914-nm laser. Finally the fractional thermal loading in the Nd:YVO4 quasi-three-level laser is calculated by matching the experimental and the simulated end deformations.
基金Supported by the National Natural Science Foundation of China under Grant No 61475086the Natural Science Foundation of Shandong Province under Grant Nos ZR2015FM018 and ZR2014FM028
文摘A passively Q-switched Nd:YVO4 laser at 1064 nm is demonstrated based on a gold nanotriangle saturable absorber(GNT SA).Under a pump power of 3.82 W,the maximum average output power of 218mW is achieved,corresponding to a slope efficiency of 12.9%.The minimum pulse width is 165ns and the maximum pulse repetition rate is 300kHz at the pump power of 3.48 W.Our results prove that the GNT SA is a promising saturable absorber for near-infrared lasers.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60225005 and 10227401, the Knowledge Innovation Programme of Chinese Academy of Sciences, and the National Hi-Tech ICF Committee of China.
文摘We realize a stable self-starting passively mode-locking all-solid-state laser by using novel GaAs mirrors as the absorber and output coupler. The GaAs mirror is grown by the technology of metal organic chemical vapour deposition at low temperature. With such an absorber as the output coupler in the laser resonator, laser pulses with duration of 42ps were generated at a repetition rate of 400MHz, corresponding to the average power of 590mW.