Background The genetic diversity of yak,a key domestic animal on the Qinghai-Tibetan Plateau(QTP),is a vital resource for domestication and breeding efforts.This study presents the first yak pangenome obtained through...Background The genetic diversity of yak,a key domestic animal on the Qinghai-Tibetan Plateau(QTP),is a vital resource for domestication and breeding efforts.This study presents the first yak pangenome obtained through the de novo assembly of 16 yak genomes.Results We discovered 290 Mb of nonreference sequences and 504 new genes.Our pangenome-wide presence and absence variation(PAV)analysis revealed 5,120 PAV-related genes,highlighting a wide range of variety-specific genes and genes with varying frequencies across yak populations.Principal component analysis(PCA)based on binary gene PAV data classified yaks into three new groups:wild,domestic,and Jinchuan.Moreover,we pro-posed a‘two-haplotype genomic hybridization model'for understanding the hybridization patterns among breeds by integrating gene frequency,heterozygosity,and gene PAV data.A gene PAV-GWAS identified a novel gene(Bos-Gru3G009179)that may be associated with the multirib trait in Jinchuan yaks.Furthermore,an integrated transcrip-tome and pangenome analysis highlighted the significant differences in the expression of core genes and the muta-tional burden of differentially expressed genes between yaks from high and low altitudes.Transcriptome analysis across multiple species revealed that yaks have the most unique differentially expressed m RNAs and lnc RNAs(between high-and low-altitude regions),especially in the heart and lungs,when comparing high-and low-altitude adaptations.Conclusions The yak pangenome offers a comprehensive resource and new insights for functional genomic studies,supporting future biological research and breeding strategies.展开更多
In this study, yak bone collagen hydrolysate(YBCH)was produced by mixed proteases and provided to standard-diet mice at a different dose(low dose(LD), medium dose(MD), and high dose(HD))to investigate its effects on t...In this study, yak bone collagen hydrolysate(YBCH)was produced by mixed proteases and provided to standard-diet mice at a different dose(low dose(LD), medium dose(MD), and high dose(HD))to investigate its effects on the composition of gut microbiota and short-chain fatty acids(SCFA)production. It was found that YBCH was mainly composed of small molecular peptides whose molecular weight below 2 000 Da. Notably, supplementation with different doses of YBCH could significantly downregulate the ratio of Firmicutes to Bacteroidetes in the fecal microbiota. At the family level, the Lachnospiraceae abundance was significantly reduced in the YBCH gavage groups(mean reduction ratio 41.7 %, 35.2%, and 36.4% for LD, MD, and HD group, respectively). The predicted functions of gut microbes in the MD group were significantly increased at “lipid metabolism” and “glycan biosynthesis and metabolism”. Moreover, the SCFA production in the YBCH groups was elevated. Especially, the concentration of acetic acid, propionic acid, and butyric acid in the MD group was separately increased 79.7%, 89.2%, and 78.8% than that in the NC group. These results indicated that YBCH might be applied in the development of functional food for intestinal microecological regulation.展开更多
基金This study was supported by the National Key R&D Program of China(2021YFD1600200)Program of National Beef Cattle and Yak Industrial Technol-ogy System(NO.CARS-37)+1 种基金Natural Science Foundation of Sichuan Province(General Program)(24NSFSC0581)the Scientific and Technological Innovation Team for Qinghai-Tibetan Plateau Research in Southwest Minzu University(Grant No.2024CXTD02)。
文摘Background The genetic diversity of yak,a key domestic animal on the Qinghai-Tibetan Plateau(QTP),is a vital resource for domestication and breeding efforts.This study presents the first yak pangenome obtained through the de novo assembly of 16 yak genomes.Results We discovered 290 Mb of nonreference sequences and 504 new genes.Our pangenome-wide presence and absence variation(PAV)analysis revealed 5,120 PAV-related genes,highlighting a wide range of variety-specific genes and genes with varying frequencies across yak populations.Principal component analysis(PCA)based on binary gene PAV data classified yaks into three new groups:wild,domestic,and Jinchuan.Moreover,we pro-posed a‘two-haplotype genomic hybridization model'for understanding the hybridization patterns among breeds by integrating gene frequency,heterozygosity,and gene PAV data.A gene PAV-GWAS identified a novel gene(Bos-Gru3G009179)that may be associated with the multirib trait in Jinchuan yaks.Furthermore,an integrated transcrip-tome and pangenome analysis highlighted the significant differences in the expression of core genes and the muta-tional burden of differentially expressed genes between yaks from high and low altitudes.Transcriptome analysis across multiple species revealed that yaks have the most unique differentially expressed m RNAs and lnc RNAs(between high-and low-altitude regions),especially in the heart and lungs,when comparing high-and low-altitude adaptations.Conclusions The yak pangenome offers a comprehensive resource and new insights for functional genomic studies,supporting future biological research and breeding strategies.
基金support from the staff of the National Engineering Research Center for Functional Food,Jiangnan Universitysupported by the Postdoctoral Research Funding of Jiangsu Province (2021K269B)National Key Research & Developmental Program of China (2018YFA0900300)。
文摘In this study, yak bone collagen hydrolysate(YBCH)was produced by mixed proteases and provided to standard-diet mice at a different dose(low dose(LD), medium dose(MD), and high dose(HD))to investigate its effects on the composition of gut microbiota and short-chain fatty acids(SCFA)production. It was found that YBCH was mainly composed of small molecular peptides whose molecular weight below 2 000 Da. Notably, supplementation with different doses of YBCH could significantly downregulate the ratio of Firmicutes to Bacteroidetes in the fecal microbiota. At the family level, the Lachnospiraceae abundance was significantly reduced in the YBCH gavage groups(mean reduction ratio 41.7 %, 35.2%, and 36.4% for LD, MD, and HD group, respectively). The predicted functions of gut microbes in the MD group were significantly increased at “lipid metabolism” and “glycan biosynthesis and metabolism”. Moreover, the SCFA production in the YBCH groups was elevated. Especially, the concentration of acetic acid, propionic acid, and butyric acid in the MD group was separately increased 79.7%, 89.2%, and 78.8% than that in the NC group. These results indicated that YBCH might be applied in the development of functional food for intestinal microecological regulation.