期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The Active Yakutat (Kula?) Plate and Its Southcentral Alaska Megathrust and Intraplate Earthquakes
1
作者 John W. Reeder 《Journal of Earth Science and Engineering》 2016年第1期18-58,共41页
Alaska geology and plate tectonics have not been well understood due to an active Yakutat plate, believed to be part of the remains of an ancient Kula plate, not being acknowledged to exist in Alaska. It is positioned... Alaska geology and plate tectonics have not been well understood due to an active Yakutat plate, believed to be part of the remains of an ancient Kula plate, not being acknowledged to exist in Alaska. It is positioned throughout most of southcentral Alaska beneath the North American plate and above the NNW subducting Pacific plate. The Kula? plate and its eastern spreading ridge were partially "captured" by the North American plate in the Paleocene. Between 63 Ma and 32 Ma, large volumes of volcanics erupted from its subducted N-S striking spreading ridge through a slab window. The eruptions stopped at 32 Ma, likely due to the Pacific plate fiat-slab subducting from the south beneath this spreading ridge. At 28 Ma, magmatism started again to the east; indicating a major shift to the east of this "refusing to die" spreading ridge. The captured Yakutat plate has also been subducting since 63 Ma to the WSW. It started to change to WSW fiat-slab subduction at 32 Ma, which stopped all subduction magmatism in W and SW Alaska by 22 Ma. The Yakutat plate subduction has again increased with the impact/joining of the coastal Yakutat terrane from the ESE about 5 Ma, resulting in the Cook Inlet Quaternary volcanism of southcentral Alaska. During the 1964 Alaska earthquake, sudden movements along the southcentral Alaska thrust faults between the Yakutat plate and the Pacific plate occurred. Specifically, the movements consisted of the Pacific plate moving NNW under the buried Yakutat plate and of the coastal Yakutat terrane, which is considered part of the Yakutat plate, thrusting WSW onto the Pacific plate. These were the two main sources of energy release for the E part of this earthquake. Only limited movement between the Yakutat plate and the North American plate occurred during this 1964 earthquake event. Buried paleopeat age dates indicate the thrust boundary between the Yakutat plate and North American plate will move in about 230 years, resulting in a more "continental" type megathrust earthquake for southcentral Alaska. There are, therefore, at least two different types ofmegathrust earthquakes occurring in southcentral Alaska: the more oceanic 1964 type and the more continental type. In addition, large "active" WSW oriented strike-slip faults are recognized in the Yakutat plate, called slice faults, which represent another earthquake hazard for the region. These slice faults also indicate important oil/gas and mineral resource locations. 展开更多
关键词 1964 Alaska earthquake oceanic and continental types of megathrust earthquakes WSW subducting yakutat plate large active WSW striking slice faults Alaska geology and tectonics oil and gas resources.
下载PDF
南阿拉斯加地壳及上地幔结构成像研究 被引量:3
2
作者 柳存喜 王志 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2014年第7期2113-2126,共14页
通过反演562891个纵波和156321个横波走时数据,第一次同时获得了阿拉斯加地区地壳及上地幔的纵波与横波速度以及泊松比图像,为更好地认识阿拉斯加地区的深部地震结构、太平洋板块与亚库塔特板块的俯冲几何形态提供了科学依据.成像结果表... 通过反演562891个纵波和156321个横波走时数据,第一次同时获得了阿拉斯加地区地壳及上地幔的纵波与横波速度以及泊松比图像,为更好地认识阿拉斯加地区的深部地震结构、太平洋板块与亚库塔特板块的俯冲几何形态提供了科学依据.成像结果表明P波和S波速度图像与泊松比结构具有很好的一致性,强的高速度和低泊松比异常沿着阿拉斯加俯冲带延伸至200 km深度,该高速度和低泊松比异常体与俯冲带的地震空间分布吻合,因此,我们认为该高速体为俯冲的太平洋板块和亚库塔特板块.从地震空间分布发现,大部分大地震(M>6.5)发生在高速度与低速度异常交界处,可能反映了俯冲板块之间强耦合作用.在俯冲带的地幔楔显示出广泛的低速度和高泊松比异常,并且这些异常与岛弧火山的位置相对应,这与大洋板块俯冲所形成的岩浆入侵作用有关.研究结果表明在南阿拉斯加俯冲带,俯冲板块的俯冲角度从兰格尔块体下方的平坦变成在布里斯托尔湾下方的陡峭,这与亚库塔特板块俯冲在兰格尔块体下方和太平洋板块俯冲在布里斯托尔湾下方有关.在基奈半岛和科迪亚克岛连接处的上地幔位置存在强烈的低速与高泊松比异常体,使该处的大洋俯冲板块变薄.这一现象可能与亚库塔特板块和太平洋板块相互碰撞作用以及软流圈强烈的上升流入侵有关. 展开更多
关键词 太平洋俯冲带 地震层析成像 地震产生 板块间耦合 亚库塔特板块
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部