A study of tsunami events in the East (Japan) Sea using continuous Galerkin finite element model, aiming at reproducing tsunami waves generated by underwater earthquakes in 1983 and 1993 respectively has been perfor...A study of tsunami events in the East (Japan) Sea using continuous Galerkin finite element model, aiming at reproducing tsunami waves generated by underwater earthquakes in 1983 and 1993 respectively has been performed focusing on the geographic extent of a topographic feature in the East (Japan) Sea. Numerical models can be the proper tools to study the combined effects of realistic topography. Subsequently, using the FEM based two-dimensional model we have simulated the smoothed and flattened topographic effects by removal of Yamato Rise and seamounts for the cases of tthe 1983 Central region earthquake tsunami and the 1993 southwestern Hokkaido earthquake tsunami. The results have shown that there will be higher tsunamis along the eastern coasts of Korea in general except some areas, like Sokcho with removal of topographic highs, thus providing complicated bottom topography of the East (Japan) Sea as effective tsunami energy scattering.展开更多
基金The work was financially supported by the Korean Ministry of Land,Transport and Maritime AffairsINTAS(Grant No.06-1000013-9236)
文摘A study of tsunami events in the East (Japan) Sea using continuous Galerkin finite element model, aiming at reproducing tsunami waves generated by underwater earthquakes in 1983 and 1993 respectively has been performed focusing on the geographic extent of a topographic feature in the East (Japan) Sea. Numerical models can be the proper tools to study the combined effects of realistic topography. Subsequently, using the FEM based two-dimensional model we have simulated the smoothed and flattened topographic effects by removal of Yamato Rise and seamounts for the cases of tthe 1983 Central region earthquake tsunami and the 1993 southwestern Hokkaido earthquake tsunami. The results have shown that there will be higher tsunamis along the eastern coasts of Korea in general except some areas, like Sokcho with removal of topographic highs, thus providing complicated bottom topography of the East (Japan) Sea as effective tsunami energy scattering.