The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography a...The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography and sedimentological studies,reservoir quality and fluid flow units from derivative parameters,and capillary pressure and wetting fluid saturation relationship.Textural and diagenetic features are affecting the reservoir quality.Cementation,compaction,and presence of clay minerals such as kaolinite are found to reduce the quality while dissolution and secondary porosity are noticed to improve it.It is believed that the Narimba Formation is a potential reservoir with a wide range of porosity and permeability.Porosity ranges from 3.1%to 25.4%with a mean of 15.84%,while permeability ranges between 0.01 mD and 510 mD,with a mean of 31.05 mD.Based on the heterogenous lithology,the formation has been categorized into five groups based on permeability variations.Group I showed an excellent to good quality reservoir with coarse grains.The impacts of both textural and diagenetic features improve the reservoir and producing higher reservoir quality index(RQI)and flow zone indicators(FZI)as well as mostly mega pores.The non-wetting fluid migration has the higher possibility to flow in the formation while displacement pressure recorded as zero.Group II showed a fair quality reservoir with lower petrophysical properties in macro pores.The irreducible water saturation is increasing while the textural and digenetic properties are still enhancing the reservoir quality.Group III reflects lower quality reservoir with mostly macro pores and higher displacement pressure.It may indicate smaller grain size and increasing amount of cement and clay minerals.Group IV,and V are interpreted as a poor-quality reservoir that has lower RQI and FZI.The textural and digenetic features are negatively affecting the reservoir and are leading to smaller pore size and pore throat radii(r35)values to be within the range of macro,meso-,micro-,and nano pores.The capillary displacement pressure curves of the three groups show increases reaching the maximum value of 400 psia in group V.Agreement with the classification of permeability,r35 values,and pore type can be used in identifying the quality of reservoir.展开更多
Based on new data from cores,drilling and logging,combined with extensive rock and mineral testing analysis,a systematic analysis is conducted on the characteristics,diagenesis types,genesis and controlling factors of...Based on new data from cores,drilling and logging,combined with extensive rock and mineral testing analysis,a systematic analysis is conducted on the characteristics,diagenesis types,genesis and controlling factors of deep to ultra-deep abnormally high porosity clastic rock reservoirs in the Oligocene Linhe Formation in the Hetao Basin.The reservoir space of the deep to ultra-deep clastic rock reservoirs in the Linhe Formation is mainly primary pores,and the coupling of three favorable diagenetic elements,namely the rock fabric with strong compaction resistance,weak thermal compaction diagenetic dynamic field,and diagenetic environment with weak fluid compaction-weak cementation,is conducive to the preservation of primary pores.The Linhe Formation clastic rocks have a superior preexisting material composition,with an average total content of 90%for quartz,feldspar,and rigid rock fragments,and strong resistance to compaction.The geothermal gradient in Linhe Depression in the range of(2.0–2.6)°C/100 m is low,and together with the burial history of long-term shallow burial and late rapid deep burial,it forms a weak thermal compaction diagenetic dynamic field environment.The diagenetic environment of the saline lake basin is characterized by weak fluid compaction.At the same time,the paleosalinity has zoning characteristics,and weak cementation in low salinity areas is conducive to the preservation of primary pores.The hydrodynamic conditions of sedimentation,salinity differentiation of ancient water in saline lake basins,and sand body thickness jointly control the distribution of high-quality reservoirs in the Linhe Formation.展开更多
Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore charact...Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems.展开更多
The Middle Permian Qixia Formation in the Shuangyushi area,northwestern Sichuan Basin,develops shoal-facies dolomite reservoirs.To pinpoint promising reservoirs in the Qixia Formation,deep thin shoal-facies dolomite r...The Middle Permian Qixia Formation in the Shuangyushi area,northwestern Sichuan Basin,develops shoal-facies dolomite reservoirs.To pinpoint promising reservoirs in the Qixia Formation,deep thin shoal-facies dolomite reservoirs were predicted using the techniques of pre-stack Kirchhoff-Q compensation for absorption,inverse Q filtering,low-to high-frequency compensation,forward modeling,and facies-controlled seismic meme inversion.The results are obtained in six aspects.First,the dolomite reservoirs mainly exist in the middle and lower parts of the second member of Qixia Formation(Qi2 Member),which coincide with the zones shoal cores are developed.Second,the forward modeling shows that the trough energy at the top and bottom of shoal core increases with increasing shoal-core thickness,and weak peak reflections are associated in the middle of shoal core.Third,five types of seismic waveform are identified through waveform analysis of seismic facies.Type-Ⅰ and Type-Ⅱ waveforms correspond to promising facies(shoal core microfacies).Fourth,vertically,two packages of thin dolomite reservoirs turn up in the sedimentary cycle of intraplatform shoal in the Qi2 Member,and the lower package is superior to the upper package in dolomite thickness,scale and lateral connectivity.Fifth,in plane,significantly controlled by sedimentary facies,dolomite reservoirs laterally distribute with consistent thickness in shoal cores at topographical highs and extend toward the break.Sixth,the promising prospects are the zones with thick dolomite reservoirs and superimposition of horstegraben structural traps.展开更多
Increasing demand for energy due to the populous Eastern Australia has driven oil and gas industries to find new sources of hydrocarbons as they are the primary energy suppliers.Intensive study has been done on the Vo...Increasing demand for energy due to the populous Eastern Australia has driven oil and gas industries to find new sources of hydrocarbons as they are the primary energy suppliers.Intensive study has been done on the Volador Formation in the Gippsland Basin by means of core-based petrophysical,sedimentological,and petrographic analyses as well as well log-based interpretation and capillary pressure test.Five wells from Kipper,Basker and Tuna fields with available dataset were investigated in this study:Kipper-1,Basker-1,Basker-2,Basker-5 and Tuna-4.Overall,the formation has good reservoir quality based on the high porosity and permeability values obtained through core and well log petrophysical analyses.The formation made up of mostly moderate to coarse quartz grains that has experienced strong anti-compaction and is poorly cemented.Montmorillonite and illite clays are seen dispersed in the rock formation,with the minority being mixed clays.These clays and diagenetic features including kaolinite cement and quartz overgrowth that can lead to porosity reduction only have insignificant impact on the overall reservoir quality.In addition,capillary pressure data shows that most samples are found in the transition to good reservoir zones(<50%saturation).The results obtained from this study have shown that the Volador Formation in the Gippsland Basin is worth for hydrocarbon exploration.展开更多
For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture ...For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture extension due to shale minerals erosion by oil-based drilling fluid.With the evaluation for the damage of natural and hydraulic fractures caused by mechanical properties weakening of shale fracture surface,fracture closure and rock powder blocking,the formation damage pattern is proposed with consideration of the compound effect of drilling fluid and fracturing fluid.The formation damage mechanism during drilling and completion process in shale reservoir is revealed,and the protection measures are raised.The drilling fluid can deeply invade into the shale formation through natural and induced fractures,erode shale minerals and weaken the mechanical properties of shale during the drilling process.In the process of hydraulic fracturing,the compound effect of drilling fluid and fracturing fluid further weakens the mechanical properties of shale,results in fracture closure and rock powder shedding,and thus induces stress-sensitive damage and solid blocking damage of natural/hydraulic fractures.The damage can yield significant conductivity decrease of fractures,and restrict the high and stable production of shale oil and gas wells.The measures of anti-collapse and anti-blocking to accelerate the drilling of reservoir section,forming chemical membrane to prevent the weakening of the mechanical properties of shale fracture surface,strengthening the plugging of shale fracture and reducing the invasion range of drilling fluid,optimizing fracturing fluid system to protect fracture conductivity are put forward for reservoir protection.展开更多
The Mangahewa Formation is the primary reservoir target in the Mangahewa Field in the Taranaki Basin,New Zealand.This formation is distinguished by its marginal marine substantial tight-sand reservoir,having thickness...The Mangahewa Formation is the primary reservoir target in the Mangahewa Field in the Taranaki Basin,New Zealand.This formation is distinguished by its marginal marine substantial tight-sand reservoir,having thickness exceeding 800 m.The aim of this study is to assess the reservoir properties of the Mangahewa Formation through 3D reservoir modeling,employing 3D seismic data,core data,and well data from the Mangahewa Field.Utilizing variance attributes,the faults and horizons have been identified successfully within the field.The majority of the interpreted faults exhibit dip angles exceeding 60°,with a maximum displacement of 118 m.To detect direct hydrocarbon indicators,root-mean-square amplitude seismic attribute,envelope,and generalized spectral decomposition techniques have been employed.Subsequently,four lithofacies,comprising 78.3%sandstone,9.2%siltstone,9.5%claystone,and 3.0%coal have been established by utilizing the Sequential Indicator Simulation(SIS)algorithm to create a lithofacies model.A property model has been generated using the Sequential Gaussian Simulation(SGS)algorithm.Petrophysical evaluation indicates that the Mangahewa Formation exhibits reservoir qualities ranging from fair to good,with porosity levels between 8%and 11%,permeability averaging up to 10 mD,variable shale volumes,and hydrocarbon saturation in the range of 40%-50%.This study's methodologies and findings can serve as a valuable foundation for similar investigations in other tightsand gas fields located in different regions.展开更多
This study analyzed the petrological characteristics,diagenesis,pore types,and physical properties of the tight coarse-grained siliciclastic sequences in the third member of the Upper Triassic Xujiahe Formation(also r...This study analyzed the petrological characteristics,diagenesis,pore types,and physical properties of the tight coarse-grained siliciclastic sequences in the third member of the Upper Triassic Xujiahe Formation(also referred to as the Xu-3 Member)in the western Yuanba area in the northeastern Sichuan Basin,China,based on the results of 242.61-m-long core description,292 thin-section observations,scanning electron microscopy(SEM),and 292 physical property tests.The types and genetic mechanisms of high-quality tight coarse-grained siliciclastic reservoirs in this member was determined thereafter.The research objective is to guide the exploration and development of the tight coarse-grained siliciclastic sequences in the Xu-3 Member.The results of this study are as follows.Two types of high-quality reservoirs are developed in the coarse-grained siliciclastic sequences of the Xu-3 Member,namely the fractured fine-grained sandy conglomerate type and porous medium-grained calcarenaceous sandstone type.Hydrodynamic energy in the sedimentary environment is the key factor controlling the formation of high-quality reservoirs.These high-quality reservoirs are developed mainly in the transitional zone with moderately high hydrodynamic energy between delta-plain braided channels and delta-front subaqueous distributary channels.The dolomitic debris(gravel)content is the main factor affecting the reservoirs’physical properties.The micritic algal debris and sandy debris in the dolomitic debris(or gravels)tend to recrystallize during burial,forming intercrystalline pores within.In the medium-grained calcarenaceous sandstones,intercrystalline pores in the dolomitic debris are formed at the early diagenetic stage,and a pore system consisting of structural fractures connecting intergranular pores,intergranular dissolution pores,and kaolinite intergranular micropores is developed at the late stage of diagenesis.The formation of intercrystalline pores in dolomite gravels and gravel-edge fractures,a pore system connected by gravel-edge and tectonic fractures,is closely related to the dolomite gravels in the sandy fine-grained conglomerates.展开更多
Taking the Paleogene Shahejie Formation in Nanpu sag of Bohai Bay Basin as an example,this study comprehensively utilizes seismic,mud logging,well logging,physical property analysis and core thin section data to inves...Taking the Paleogene Shahejie Formation in Nanpu sag of Bohai Bay Basin as an example,this study comprehensively utilizes seismic,mud logging,well logging,physical property analysis and core thin section data to investigate the metamorphic reservoir formed by contact metamorphism after igneous rock intrusion.(1)A geological model of the igneous intrusion contact met amorphic system is proposed,which can be divided into five structural layers vertically:the intrusion,upper metamorphic aureole,lower metamorphic aureole,normal sedimentary layers on the roof and floor.(2)The intrusion is characterized by xenoliths indicating intrusive facies at the top,regular changes in rock texture and mineral crystallization from the center to the edge on a microscopic scale,and low-angle oblique penetrations of the intrusion through sedimentary strata on a macroscopic scale.The metamorphic aureole has characteristics such as sedimentary rocks as the host rock,typical palimpsest textures developed,various low-temperature thermal metamorphic minerals developed,and medium-low grade thermal metamorphic rocks as the lithology.(3)The reservoir in contact metamorphic aureole has two types of reservoir spaces:matrix pores and fractures.The matrix pores are secondary"intergranular pores"distributed around metamorphic minerals after thermal metamorphic transformation in metasandstones.The fractures are mainly structural fractures and intrusive compressive fractures in metamudstones.The reservoirs generally have three spatial distribution characteristics:layered,porphyritic and hydrocarbon impregnation along fracture.(4)The distribution of reservoirs in the metamorphic aureole is mainly controlled by the intensity of thermal baking.Furthermore,the distribution of favorable reservoirs is controlled by the coupling of favorable lithofacies and thermal contact metamorphism,intrusive compression and hydrothermal dissolution.The proposal and application of the geological model of the intrusion contact metamorphic system are expected to promote the discovery of exploration targets of contact metamorphic rock in Nanpu sag,and provide a reference for the study and exploration of deep contact metamorphic rock reservoirs in the Bohai Bay Basin.展开更多
Investigating the formation mechanisms of carbonate geothermal reservoirs is of theoretical and practical significance for summarizing the formation pattern of geothermal resources and further guiding their effective ...Investigating the formation mechanisms of carbonate geothermal reservoirs is of theoretical and practical significance for summarizing the formation pattern of geothermal resources and further guiding their effective exploitation.The Beijing-Tianjin-Hebei Plain(BTHP),predominantly located within the Jizhong Depression and Cangxian Uplift in the Bohai Bay Basin,serves as the primary region for geothermal exploitation and utilization in China.More than 1500 geothermal wells have been drilled therein,with water temperature at the wellhead ranging from 55 to 110°C,single-well flow rate ranging between 80 and 120 m^(3)/h,and cumulative heating area exceeding 100×10^(6)m^(3).However,the exploration and research in the region remain limited overall.As per the previous geothermal and petroleum exploration results and the latest geothermal drilling data,this study comprehensively evaluated the geothermal resources of karst geothermal reservoirs.The results show that two suites of carbonate karst reservoirs,namely the Jxw Formation and the Ordovician strata,have primarily developed in the BTHP,and their formation and evolution can be divided into four stages:the Mesoproterozoic-Early Paleozoic stage with carbonate sedimentation and the development of interlayer karst,the Late Paleozoic stage with the development of direct sedimentary cover,the Mesozoic stage with compressional uplifting and development of buried hill karst,and the Cenozoic stage with regional cover deposition and the modification and finalization of karst geothermal reservoirs.Accordingly,the porosity evolution history of the geothermal reservoirs is composed of three stages,namely a significant decrease followed by a minor increase,a gradual decline,and then a small fluctuation from increase to decrease before slowly rising again.The karstification in geothermal reservoirs can be summarized into quasi-syngenetic karstification,epigenetic karstification,and burial karstification,which can be subdivided into seven subcategories.The carbonate geothermal reservoirs in the study area boast total geothermal resources of 53.821×10^(9)GJ,or 184.155×10^(9)t of standard coal equivalent(tce),and the annual exploitable geothermal resources in the urban area can heat an area of(400‒500)×10^(6)m^(3),indicating great potential of geothermal exploitation.展开更多
To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a four...To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a fourth-order isochronous stratigraphic framework was set up and then sedimentary facies and reservoirs in the Pleistocene Qigequan Formation in Taidong area of Qaidam Basin were studied by seismic geomorphology and seismic lithology.The study method and thought are as following.Firstly,techniques of phase rotation,frequency decomposition and fusion,and stratal slicing were applied to the 9-component S-wave seismic data to restore sedimentary facies of major marker beds based on sedimentary models reflected by satellite images.Then,techniques of seismic attribute extraction,principal component analysis,and random fitting were applied to calculate the reservoir thickness and physical parameters of a key sandbody,and the results are satisfactory and confirmed by blind testing wells.Study results reveal that the dominant sedimentary facies in the Qigequan Formation within the study area are delta front and shallow lake.The RGB fused slices indicate that there are two cycles with three sets of underwater distributary channel systems in one period.Among them,sandstones in the distributary channels of middle-low Qigequan Formation are thick and broad with superior physical properties,which are favorable reservoirs.The reservoir permeability is also affected by diagenesis.Distributary channel sandstone reservoirs extend further to the west of Sebei-1 gas field,which provides a basis to expand exploration to the western peripheral area.展开更多
The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important r...The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important resource base of Daqing oilfield.After years of exploration in the Qijia area,Songliao Basin,NE China,tight oil has been found in the Upper Cretaceous Qingshankou Formation.To work out tight oil’s geological characteristics,taking tight oil in Gaotaizi oil layers of the Upper Cretaceous Qingshankou Formation in northern Songliao Basin as an example,this paper systematically analyzed the geological characteristics of unconventional tight oil in Gao3 and Gao4 layers of the Qijia area,based on the data of the geological survey,well drilling journey,well logging,and test.It is that three sets of hydrocarbon source rocks(K2qn1,K2qn2+3,and K2n1)develop in the examined area,and exhibit excellent type I and II kerogens,high organic matter abundance,and moderate maturity.The reservoir is generally composed of thin-bedded mudstone,siltstone,and sandstone,and presents poor porosity(average 8.5 vol.%)and air permeability(average 4 mD).The main reservoir space primarily includes intergranular pores,secondary soluble pores,and intergranular soluble pores.Three types of orifice throats were identified,namely fine throat,extra-fine throat,and micro-fine throat.The siltstone is generally oil-bearing,the reservoirs with slime and calcium become worse oil-bearing,and the mudstone has no obvious oil-bearing characteristics.The brittleness indices of the sandstone in the tight oil reservoir range from 40%to 60%,and those of the mudstone range from 40%to 45%,indicating a better brittleness of the tight oil reservoir.Based on the study of typical core hole data,this paper gives a comprehensive evaluation of the properties of the tight oil and establishes a tight oil single well composite bar chart as well as the initial evaluation system with the core of properties in the tight oil reservoir.This study has theoretical guiding significance and practical application value for tight oil exploration and evaluation in the Qijia area.展开更多
Taking the Lower Cretaceous Qingshuihe Formation in the southern margin of Junggar Basin as an example,the influences of the burial process in a foreland basin on the diagenesis and the development of high-quality res...Taking the Lower Cretaceous Qingshuihe Formation in the southern margin of Junggar Basin as an example,the influences of the burial process in a foreland basin on the diagenesis and the development of high-quality reservoirs of deep and ultra-deep clastic rocks were investigated using thin section,scanning electron microscope,electron probe,stable isotopic composition and fluid inclusion data.The Qingshuihe Formation went through four burial stages of slow shallow burial,tectonic uplift,progressive deep burial and rapid deep burial successively.The stages of slow shallow burial and tectonic uplift not only can alleviate the mechanical compaction of grains,but also can maintain an open diagenetic system in the reservoirs for a long time,which promotes the dissolution of soluble components by meteoric freshwater and inhibits the precipitation of dissolution products in the reservoirs.The late rapid deep burial process contributed to the development of fluid overpressure,which effectively inhibits the destruction of primary pores by compaction and cementation.The fluid overpressure promotes the development of microfractures in the reservoir,which enhances the dissolution effect of organic acids.Based on the quantitative reconstruction of porosity evolution history,it is found that the long-term slow shallow burial and tectonic uplift processes make the greatest contribution to the development of deep-ultra-deep high-quality clastic rock reservoirs,followed by the late rapid deep burial process,and the progressive deep burial process has little contribution.展开更多
It is important to predict the fracture distribution in the tight reservoirs of the Ordos Basin because fracturing is very crucial for the reconstruction of the low-permeability reservoirs. Three-dimensional finite el...It is important to predict the fracture distribution in the tight reservoirs of the Ordos Basin because fracturing is very crucial for the reconstruction of the low-permeability reservoirs. Three-dimensional finite element models are used to predict the fracture orientation and distribution of the Triassic Yanchang Formation in the Longdong area, southern Ordos Basin. The numerical modeling is based on the distribution of sand bodies in the Chang 7a and 72 members, and the different forces that have been exerted along each boundary of the basin in the Late Mesozoic and the Cenozoic. The calculated results demonstrate that the fracture orientations in the Late Mesozoic and the Ceno- zoic are NW-EW and NNE-ENE, respectively. In this paper, the two-factor method is applied to analyze the distribution of fracture density. The distribution maps of predicted fracture density in the Chang 71 and 72 members are obtained, indicating that the tectonic movement in the Late Mesozoic has a greater influence on the fracture development than that in the Cenozoic. The average fracture densities in the Chang 71 and 72 members are similar, but there are differences in their distributions. Compared with other geological elements, the lithology and the layer thickness are the primary factors that control the stress distribution in the study area, which further determine the fracture distribution in the stable Ordos Basin. The predicted fracture density and the two-factor method can be utilized to guide future exploration in the tight-sand reservoirs.展开更多
The Yanchang Formation Chang 7 oil-bearing layer of the Ordos Basin is important in China for producing shale oil.The present-day in situ stress state is of practical implications for the exploration and development o...The Yanchang Formation Chang 7 oil-bearing layer of the Ordos Basin is important in China for producing shale oil.The present-day in situ stress state is of practical implications for the exploration and development of shale oil;however,few studies are focused on stress distributions within the Chang 7 reservoir.In this study,the present-day in situ stress distribution within the Chang 7 reservoir was predicted using the combined spring model based on well logs and measured stress data.The results indicate that stress magnitudes increase with burial depth within the Chang 7 reservoir.Overall,the horizontal maximum principal stress(SHmax),horizontal minimum principal stress(Shmin) and vertical stress(Sv) follow the relationship of Sv≥SHmax>Shmin,indicating a dominant normal faulting stress regime within the Chang 7 reservoir of Ordos Basin.Laterally,high stress values are mainly distributed in the northwestern parts of the studied region,while low stress values are found in the southeastern parts.Factors influencing stress distributions are also analyzed.Stress magnitudes within the Chang 7 reservoir show a positive linear relationship with burial depth.A larger value of Young's modulus results in higher stress magnitudes,and the differential horizontal stress becomes higher when the rock Young's modulus grows larger.展开更多
Based on analysis of main controlling factors of Chang 9, the source rock, driving force of migration, migration and accumulation modes, reservoir forming stages and model and enrichment law of Chang 9 reservoir were ...Based on analysis of main controlling factors of Chang 9, the source rock, driving force of migration, migration and accumulation modes, reservoir forming stages and model and enrichment law of Chang 9 reservoir were examined. The study showed that the oil of Chang 9 reservoir in the Jiyuan and Longdong(Eastern Gansu) areas came primarily from the source rock of Chang 7 Member, but the oil of Chang 9 reservoir in the Zhidan area came primarily from the source rock of Chang 9 Member. There developed lithologic-structural oil reservoirs in Gufengzhuang-Mahuangshan area in northwest Jiyuan, structural-lithologic oil reservoirs in east Jiyuan, and lithologic reservoirs in Huachi–Qingcheng area and Zhidan area. The overpressure of Chang 7 Member was the driving force of oil migration. The burial history showed that Chang 9 Member experienced two stages of reservoir forming, the reservoir formed in the Late Jurassic was smaller in charging scope and scale, and the Early Cretaceous was the period when the source rock generated oil and gas massively and the Chang 9 reservoir came into being. Along with the tectonic movements, Chang 7 bottom structure turned from high in the west and lower in the East in the sedimentary stage to high in the east and lower in the west in the hydrocarbon accumulation stage and at last to gentle western-leaning monoclinal structure at present. In Early Cretaceous, the Chang 7 bottom structure was the lowest in the west of Huanxian-Huachi-Wuqi-Dingbian areas, so the oil migrated laterally towards the higher positions around after entering the reservoir. In the main reservoir forming period, Chang 7 bottom had an ancient anticline in Mahuangshan-Hongjingzi area of west Jiyuan, controlling the oil reservoir distribution in west Jiyuan.展开更多
Petrographic analysis combined with various techniques, such as thin section identification, petro-physical property testing, mercury penetration, oil testing results, was used to assess basic reservoir characteristic...Petrographic analysis combined with various techniques, such as thin section identification, petro-physical property testing, mercury penetration, oil testing results, was used to assess basic reservoir characteristics of deep strata in Palaeogene in the northern steep slope zone of the Bonan sag, China. The formation mechanisms of high quality reservoirs in deep strata were discussed according to evolution characteristics of paleopressures and paleofluids in geological period. The deep reservoirs have poor physical properties and mainly develop extra-low porosity, extra-low and ultra-low permeability reservoirs. Reservoir spaces mainly consist of secondary pores and overpressure fractures. Early overpressure, early hydrocarbon filling and dissolution by early organic acids are the major formation mechanisms of high quality reservoirs. The conglomerate in inner fan which had a poor primary physical property mainly experienced strong compaction and calcareous matrix recrystallization. The physical properties of the inner fan were poor with weak dissolution because of poor mobility of fluid. The reservoirs mainly are type IV reservoirs and the distribution extends with the burial depth. The braided channel reservoirs in the middle fan had relative good primary physical properties and strong ability to resist compaction which favored the preservation of primary pores. Large amounts of the secondary porosities were created due to dissolution by early organic acids. A series of micro-fractures generated by early overpressures would be important migration pathways for hydrocarbon and organic acids. Furthermore, early overpressures had retarded maturation of organic matters and organic acids which had flowed into reservoirs already and could keep in acid environment for a long time. This process would contribute significantly to reinforcing the dissolution and enhancing the reservoir quality. The braided channel reservoirs were charged with high oil saturation preferentially by early hydrocarbon filling which could inhibit later cementation. Therefore, the braided channel reservoirs develop a great quantity of reservoir spaces with type I, type II and type III reservoirs in the majority in the deep strata. With the burial depth, distributions of type I and type II reservoirs are narrowed and distribution of type III reservoirs decreases first and then extends. The reservoirs both in outer fan and in interdistributary of the middle fan have extremely poor physical properties because of extensive carbonate cementation. The type of the reservoirs mainly is type IV.展开更多
The Yancheng Sag is a favorable exploration area in the Subei Basin. However, the key geological understanding of the natural gas source and reservoir formation characteristics of the sag is still controversial. Based...The Yancheng Sag is a favorable exploration area in the Subei Basin. However, the key geological understanding of the natural gas source and reservoir formation characteristics of the sag is still controversial. Based on a set of organic geochemical experiments conducted on natural gas and associated condensate oil of the first member of the Funing Formation (E1f1) in well YCh5 and well data analysis, the oil-gas resources and reservoir formation model in the Zhujiadun gas reservoir in the Yancheng Sag, Subei Basin, were investigated. The results of this study are as follows. (1) The natural gas in the Zhujiadun gas reservoir is dry gas with high methane content, low heavy hydrocarbon content, and high maturity. The characteristics of carbon and hydrogen isotopes in the natural gas indicate that the natural gas is oil-cracked gas, which mainly originates from the source rocks of the Permian Qixia Formation. (2) The condensate oil from well YCh5 with a high degree of maturity has a high pristane/phytane ratio, low gamma-paraffin abundance, and low tricyclic terpene abundance, indicating a mixture of the Upper Paleozoic condensate oil and Cenozoic crude oil. The saturated and aromatic hydrocarbons have similar δ13C values to the Cenozoic continental crude oil. These features suggest two sources of condensate oil. (3) Oils generated from the source rocks of the Qixia Formation were cracked into highly mature gas after deep burial, which migrated along large faults into the sandstones of the E1f1 and K1t1 members. This type of reservoir was effectively preserved beneath the overlying mudstone cap rocks. Therefore, it can be inferred that a play fairway might occur in the eastern zone of the faults connected to the Paleozoic source rocks in the Yancheng Sag since this zone has similar petroleum geological conditions to well YCh5. Therefore, this zone is a favorable area for further exploration.展开更多
文摘The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography and sedimentological studies,reservoir quality and fluid flow units from derivative parameters,and capillary pressure and wetting fluid saturation relationship.Textural and diagenetic features are affecting the reservoir quality.Cementation,compaction,and presence of clay minerals such as kaolinite are found to reduce the quality while dissolution and secondary porosity are noticed to improve it.It is believed that the Narimba Formation is a potential reservoir with a wide range of porosity and permeability.Porosity ranges from 3.1%to 25.4%with a mean of 15.84%,while permeability ranges between 0.01 mD and 510 mD,with a mean of 31.05 mD.Based on the heterogenous lithology,the formation has been categorized into five groups based on permeability variations.Group I showed an excellent to good quality reservoir with coarse grains.The impacts of both textural and diagenetic features improve the reservoir and producing higher reservoir quality index(RQI)and flow zone indicators(FZI)as well as mostly mega pores.The non-wetting fluid migration has the higher possibility to flow in the formation while displacement pressure recorded as zero.Group II showed a fair quality reservoir with lower petrophysical properties in macro pores.The irreducible water saturation is increasing while the textural and digenetic properties are still enhancing the reservoir quality.Group III reflects lower quality reservoir with mostly macro pores and higher displacement pressure.It may indicate smaller grain size and increasing amount of cement and clay minerals.Group IV,and V are interpreted as a poor-quality reservoir that has lower RQI and FZI.The textural and digenetic features are negatively affecting the reservoir and are leading to smaller pore size and pore throat radii(r35)values to be within the range of macro,meso-,micro-,and nano pores.The capillary displacement pressure curves of the three groups show increases reaching the maximum value of 400 psia in group V.Agreement with the classification of permeability,r35 values,and pore type can be used in identifying the quality of reservoir.
基金Supported by the CNPC Science and Technology Project(2023ZZ022023ZZ14-01).
文摘Based on new data from cores,drilling and logging,combined with extensive rock and mineral testing analysis,a systematic analysis is conducted on the characteristics,diagenesis types,genesis and controlling factors of deep to ultra-deep abnormally high porosity clastic rock reservoirs in the Oligocene Linhe Formation in the Hetao Basin.The reservoir space of the deep to ultra-deep clastic rock reservoirs in the Linhe Formation is mainly primary pores,and the coupling of three favorable diagenetic elements,namely the rock fabric with strong compaction resistance,weak thermal compaction diagenetic dynamic field,and diagenetic environment with weak fluid compaction-weak cementation,is conducive to the preservation of primary pores.The Linhe Formation clastic rocks have a superior preexisting material composition,with an average total content of 90%for quartz,feldspar,and rigid rock fragments,and strong resistance to compaction.The geothermal gradient in Linhe Depression in the range of(2.0–2.6)°C/100 m is low,and together with the burial history of long-term shallow burial and late rapid deep burial,it forms a weak thermal compaction diagenetic dynamic field environment.The diagenetic environment of the saline lake basin is characterized by weak fluid compaction.At the same time,the paleosalinity has zoning characteristics,and weak cementation in low salinity areas is conducive to the preservation of primary pores.The hydrodynamic conditions of sedimentation,salinity differentiation of ancient water in saline lake basins,and sand body thickness jointly control the distribution of high-quality reservoirs in the Linhe Formation.
基金Supported by the PetroChina Science and Technology Innovation Fund Project(2021DQ02-1003)Basic Research Project for Central Universities(2022JCCXDC02).
文摘Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems.
文摘The Middle Permian Qixia Formation in the Shuangyushi area,northwestern Sichuan Basin,develops shoal-facies dolomite reservoirs.To pinpoint promising reservoirs in the Qixia Formation,deep thin shoal-facies dolomite reservoirs were predicted using the techniques of pre-stack Kirchhoff-Q compensation for absorption,inverse Q filtering,low-to high-frequency compensation,forward modeling,and facies-controlled seismic meme inversion.The results are obtained in six aspects.First,the dolomite reservoirs mainly exist in the middle and lower parts of the second member of Qixia Formation(Qi2 Member),which coincide with the zones shoal cores are developed.Second,the forward modeling shows that the trough energy at the top and bottom of shoal core increases with increasing shoal-core thickness,and weak peak reflections are associated in the middle of shoal core.Third,five types of seismic waveform are identified through waveform analysis of seismic facies.Type-Ⅰ and Type-Ⅱ waveforms correspond to promising facies(shoal core microfacies).Fourth,vertically,two packages of thin dolomite reservoirs turn up in the sedimentary cycle of intraplatform shoal in the Qi2 Member,and the lower package is superior to the upper package in dolomite thickness,scale and lateral connectivity.Fifth,in plane,significantly controlled by sedimentary facies,dolomite reservoirs laterally distribute with consistent thickness in shoal cores at topographical highs and extend toward the break.Sixth,the promising prospects are the zones with thick dolomite reservoirs and superimposition of horstegraben structural traps.
文摘Increasing demand for energy due to the populous Eastern Australia has driven oil and gas industries to find new sources of hydrocarbons as they are the primary energy suppliers.Intensive study has been done on the Volador Formation in the Gippsland Basin by means of core-based petrophysical,sedimentological,and petrographic analyses as well as well log-based interpretation and capillary pressure test.Five wells from Kipper,Basker and Tuna fields with available dataset were investigated in this study:Kipper-1,Basker-1,Basker-2,Basker-5 and Tuna-4.Overall,the formation has good reservoir quality based on the high porosity and permeability values obtained through core and well log petrophysical analyses.The formation made up of mostly moderate to coarse quartz grains that has experienced strong anti-compaction and is poorly cemented.Montmorillonite and illite clays are seen dispersed in the rock formation,with the minority being mixed clays.These clays and diagenetic features including kaolinite cement and quartz overgrowth that can lead to porosity reduction only have insignificant impact on the overall reservoir quality.In addition,capillary pressure data shows that most samples are found in the transition to good reservoir zones(<50%saturation).The results obtained from this study have shown that the Volador Formation in the Gippsland Basin is worth for hydrocarbon exploration.
基金Supported by the Key Fund Project of the National Natural Science Foundation of China and Joint Fund of Petrochemical Industry(Class A)(U1762212)National Natural Science Foundation of China(52274009)"14th Five-Year"Forward-looking and Fundamental Major Science and Technology Project of CNPC(2021DJ4402)。
文摘For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture extension due to shale minerals erosion by oil-based drilling fluid.With the evaluation for the damage of natural and hydraulic fractures caused by mechanical properties weakening of shale fracture surface,fracture closure and rock powder blocking,the formation damage pattern is proposed with consideration of the compound effect of drilling fluid and fracturing fluid.The formation damage mechanism during drilling and completion process in shale reservoir is revealed,and the protection measures are raised.The drilling fluid can deeply invade into the shale formation through natural and induced fractures,erode shale minerals and weaken the mechanical properties of shale during the drilling process.In the process of hydraulic fracturing,the compound effect of drilling fluid and fracturing fluid further weakens the mechanical properties of shale,results in fracture closure and rock powder shedding,and thus induces stress-sensitive damage and solid blocking damage of natural/hydraulic fractures.The damage can yield significant conductivity decrease of fractures,and restrict the high and stable production of shale oil and gas wells.The measures of anti-collapse and anti-blocking to accelerate the drilling of reservoir section,forming chemical membrane to prevent the weakening of the mechanical properties of shale fracture surface,strengthening the plugging of shale fracture and reducing the invasion range of drilling fluid,optimizing fracturing fluid system to protect fracture conductivity are put forward for reservoir protection.
文摘The Mangahewa Formation is the primary reservoir target in the Mangahewa Field in the Taranaki Basin,New Zealand.This formation is distinguished by its marginal marine substantial tight-sand reservoir,having thickness exceeding 800 m.The aim of this study is to assess the reservoir properties of the Mangahewa Formation through 3D reservoir modeling,employing 3D seismic data,core data,and well data from the Mangahewa Field.Utilizing variance attributes,the faults and horizons have been identified successfully within the field.The majority of the interpreted faults exhibit dip angles exceeding 60°,with a maximum displacement of 118 m.To detect direct hydrocarbon indicators,root-mean-square amplitude seismic attribute,envelope,and generalized spectral decomposition techniques have been employed.Subsequently,four lithofacies,comprising 78.3%sandstone,9.2%siltstone,9.5%claystone,and 3.0%coal have been established by utilizing the Sequential Indicator Simulation(SIS)algorithm to create a lithofacies model.A property model has been generated using the Sequential Gaussian Simulation(SGS)algorithm.Petrophysical evaluation indicates that the Mangahewa Formation exhibits reservoir qualities ranging from fair to good,with porosity levels between 8%and 11%,permeability averaging up to 10 mD,variable shale volumes,and hydrocarbon saturation in the range of 40%-50%.This study's methodologies and findings can serve as a valuable foundation for similar investigations in other tightsand gas fields located in different regions.
文摘This study analyzed the petrological characteristics,diagenesis,pore types,and physical properties of the tight coarse-grained siliciclastic sequences in the third member of the Upper Triassic Xujiahe Formation(also referred to as the Xu-3 Member)in the western Yuanba area in the northeastern Sichuan Basin,China,based on the results of 242.61-m-long core description,292 thin-section observations,scanning electron microscopy(SEM),and 292 physical property tests.The types and genetic mechanisms of high-quality tight coarse-grained siliciclastic reservoirs in this member was determined thereafter.The research objective is to guide the exploration and development of the tight coarse-grained siliciclastic sequences in the Xu-3 Member.The results of this study are as follows.Two types of high-quality reservoirs are developed in the coarse-grained siliciclastic sequences of the Xu-3 Member,namely the fractured fine-grained sandy conglomerate type and porous medium-grained calcarenaceous sandstone type.Hydrodynamic energy in the sedimentary environment is the key factor controlling the formation of high-quality reservoirs.These high-quality reservoirs are developed mainly in the transitional zone with moderately high hydrodynamic energy between delta-plain braided channels and delta-front subaqueous distributary channels.The dolomitic debris(gravel)content is the main factor affecting the reservoirs’physical properties.The micritic algal debris and sandy debris in the dolomitic debris(or gravels)tend to recrystallize during burial,forming intercrystalline pores within.In the medium-grained calcarenaceous sandstones,intercrystalline pores in the dolomitic debris are formed at the early diagenetic stage,and a pore system consisting of structural fractures connecting intergranular pores,intergranular dissolution pores,and kaolinite intergranular micropores is developed at the late stage of diagenesis.The formation of intercrystalline pores in dolomite gravels and gravel-edge fractures,a pore system connected by gravel-edge and tectonic fractures,is closely related to the dolomite gravels in the sandy fine-grained conglomerates.
基金Supported by the Basic Science Research Fund Project of PetroChina Affiliated Institute(2020D-5008-06)。
文摘Taking the Paleogene Shahejie Formation in Nanpu sag of Bohai Bay Basin as an example,this study comprehensively utilizes seismic,mud logging,well logging,physical property analysis and core thin section data to investigate the metamorphic reservoir formed by contact metamorphism after igneous rock intrusion.(1)A geological model of the igneous intrusion contact met amorphic system is proposed,which can be divided into five structural layers vertically:the intrusion,upper metamorphic aureole,lower metamorphic aureole,normal sedimentary layers on the roof and floor.(2)The intrusion is characterized by xenoliths indicating intrusive facies at the top,regular changes in rock texture and mineral crystallization from the center to the edge on a microscopic scale,and low-angle oblique penetrations of the intrusion through sedimentary strata on a macroscopic scale.The metamorphic aureole has characteristics such as sedimentary rocks as the host rock,typical palimpsest textures developed,various low-temperature thermal metamorphic minerals developed,and medium-low grade thermal metamorphic rocks as the lithology.(3)The reservoir in contact metamorphic aureole has two types of reservoir spaces:matrix pores and fractures.The matrix pores are secondary"intergranular pores"distributed around metamorphic minerals after thermal metamorphic transformation in metasandstones.The fractures are mainly structural fractures and intrusive compressive fractures in metamudstones.The reservoirs generally have three spatial distribution characteristics:layered,porphyritic and hydrocarbon impregnation along fracture.(4)The distribution of reservoirs in the metamorphic aureole is mainly controlled by the intensity of thermal baking.Furthermore,the distribution of favorable reservoirs is controlled by the coupling of favorable lithofacies and thermal contact metamorphism,intrusive compression and hydrothermal dissolution.The proposal and application of the geological model of the intrusion contact metamorphic system are expected to promote the discovery of exploration targets of contact metamorphic rock in Nanpu sag,and provide a reference for the study and exploration of deep contact metamorphic rock reservoirs in the Bohai Bay Basin.
文摘Investigating the formation mechanisms of carbonate geothermal reservoirs is of theoretical and practical significance for summarizing the formation pattern of geothermal resources and further guiding their effective exploitation.The Beijing-Tianjin-Hebei Plain(BTHP),predominantly located within the Jizhong Depression and Cangxian Uplift in the Bohai Bay Basin,serves as the primary region for geothermal exploitation and utilization in China.More than 1500 geothermal wells have been drilled therein,with water temperature at the wellhead ranging from 55 to 110°C,single-well flow rate ranging between 80 and 120 m^(3)/h,and cumulative heating area exceeding 100×10^(6)m^(3).However,the exploration and research in the region remain limited overall.As per the previous geothermal and petroleum exploration results and the latest geothermal drilling data,this study comprehensively evaluated the geothermal resources of karst geothermal reservoirs.The results show that two suites of carbonate karst reservoirs,namely the Jxw Formation and the Ordovician strata,have primarily developed in the BTHP,and their formation and evolution can be divided into four stages:the Mesoproterozoic-Early Paleozoic stage with carbonate sedimentation and the development of interlayer karst,the Late Paleozoic stage with the development of direct sedimentary cover,the Mesozoic stage with compressional uplifting and development of buried hill karst,and the Cenozoic stage with regional cover deposition and the modification and finalization of karst geothermal reservoirs.Accordingly,the porosity evolution history of the geothermal reservoirs is composed of three stages,namely a significant decrease followed by a minor increase,a gradual decline,and then a small fluctuation from increase to decrease before slowly rising again.The karstification in geothermal reservoirs can be summarized into quasi-syngenetic karstification,epigenetic karstification,and burial karstification,which can be subdivided into seven subcategories.The carbonate geothermal reservoirs in the study area boast total geothermal resources of 53.821×10^(9)GJ,or 184.155×10^(9)t of standard coal equivalent(tce),and the annual exploitable geothermal resources in the urban area can heat an area of(400‒500)×10^(6)m^(3),indicating great potential of geothermal exploitation.
基金Supported by the CNPC Science and Technology Projects(2022-N/G-47808,2023-N/G-67014)RIPED International Cooperation Project(19HTY5000008).
文摘To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a fourth-order isochronous stratigraphic framework was set up and then sedimentary facies and reservoirs in the Pleistocene Qigequan Formation in Taidong area of Qaidam Basin were studied by seismic geomorphology and seismic lithology.The study method and thought are as following.Firstly,techniques of phase rotation,frequency decomposition and fusion,and stratal slicing were applied to the 9-component S-wave seismic data to restore sedimentary facies of major marker beds based on sedimentary models reflected by satellite images.Then,techniques of seismic attribute extraction,principal component analysis,and random fitting were applied to calculate the reservoir thickness and physical parameters of a key sandbody,and the results are satisfactory and confirmed by blind testing wells.Study results reveal that the dominant sedimentary facies in the Qigequan Formation within the study area are delta front and shallow lake.The RGB fused slices indicate that there are two cycles with three sets of underwater distributary channel systems in one period.Among them,sandstones in the distributary channels of middle-low Qigequan Formation are thick and broad with superior physical properties,which are favorable reservoirs.The reservoir permeability is also affected by diagenesis.Distributary channel sandstone reservoirs extend further to the west of Sebei-1 gas field,which provides a basis to expand exploration to the western peripheral area.
基金funded by the shale oil and gas geological survey project in Quemoco sag,Qiangtang Basin of China Geological Survey(DD20221855,DD20230315).
文摘The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important resource base of Daqing oilfield.After years of exploration in the Qijia area,Songliao Basin,NE China,tight oil has been found in the Upper Cretaceous Qingshankou Formation.To work out tight oil’s geological characteristics,taking tight oil in Gaotaizi oil layers of the Upper Cretaceous Qingshankou Formation in northern Songliao Basin as an example,this paper systematically analyzed the geological characteristics of unconventional tight oil in Gao3 and Gao4 layers of the Qijia area,based on the data of the geological survey,well drilling journey,well logging,and test.It is that three sets of hydrocarbon source rocks(K2qn1,K2qn2+3,and K2n1)develop in the examined area,and exhibit excellent type I and II kerogens,high organic matter abundance,and moderate maturity.The reservoir is generally composed of thin-bedded mudstone,siltstone,and sandstone,and presents poor porosity(average 8.5 vol.%)and air permeability(average 4 mD).The main reservoir space primarily includes intergranular pores,secondary soluble pores,and intergranular soluble pores.Three types of orifice throats were identified,namely fine throat,extra-fine throat,and micro-fine throat.The siltstone is generally oil-bearing,the reservoirs with slime and calcium become worse oil-bearing,and the mudstone has no obvious oil-bearing characteristics.The brittleness indices of the sandstone in the tight oil reservoir range from 40%to 60%,and those of the mudstone range from 40%to 45%,indicating a better brittleness of the tight oil reservoir.Based on the study of typical core hole data,this paper gives a comprehensive evaluation of the properties of the tight oil and establishes a tight oil single well composite bar chart as well as the initial evaluation system with the core of properties in the tight oil reservoir.This study has theoretical guiding significance and practical application value for tight oil exploration and evaluation in the Qijia area.
基金Supported by the National Natural Science Foundation of China(41872113,42172109,42172108)CNPC-China University of Petroleum(Beijing)Strategic Cooperation Project(ZLZX2020-02)+1 种基金National Key R&D Program Project(2018YFA0702405)China University of Petroleum(Beijing)Research Project(2462020BJRC002,2462020YXZZ020)。
文摘Taking the Lower Cretaceous Qingshuihe Formation in the southern margin of Junggar Basin as an example,the influences of the burial process in a foreland basin on the diagenesis and the development of high-quality reservoirs of deep and ultra-deep clastic rocks were investigated using thin section,scanning electron microscope,electron probe,stable isotopic composition and fluid inclusion data.The Qingshuihe Formation went through four burial stages of slow shallow burial,tectonic uplift,progressive deep burial and rapid deep burial successively.The stages of slow shallow burial and tectonic uplift not only can alleviate the mechanical compaction of grains,but also can maintain an open diagenetic system in the reservoirs for a long time,which promotes the dissolution of soluble components by meteoric freshwater and inhibits the precipitation of dissolution products in the reservoirs.The late rapid deep burial process contributed to the development of fluid overpressure,which effectively inhibits the destruction of primary pores by compaction and cementation.The fluid overpressure promotes the development of microfractures in the reservoir,which enhances the dissolution effect of organic acids.Based on the quantitative reconstruction of porosity evolution history,it is found that the long-term slow shallow burial and tectonic uplift processes make the greatest contribution to the development of deep-ultra-deep high-quality clastic rock reservoirs,followed by the late rapid deep burial process,and the progressive deep burial process has little contribution.
基金funded by the National Natural Science Foundations of China(Grant Nos.40772121 and 41530207)State Key Projects of Petroleum(Nos.2008ZX05029001,2011ZX05029-001 and 2014A0213)Research and Development Foundations of the Huaneng Clean Energy Research Institute(TY-15-CERI02)
文摘It is important to predict the fracture distribution in the tight reservoirs of the Ordos Basin because fracturing is very crucial for the reconstruction of the low-permeability reservoirs. Three-dimensional finite element models are used to predict the fracture orientation and distribution of the Triassic Yanchang Formation in the Longdong area, southern Ordos Basin. The numerical modeling is based on the distribution of sand bodies in the Chang 7a and 72 members, and the different forces that have been exerted along each boundary of the basin in the Late Mesozoic and the Cenozoic. The calculated results demonstrate that the fracture orientations in the Late Mesozoic and the Ceno- zoic are NW-EW and NNE-ENE, respectively. In this paper, the two-factor method is applied to analyze the distribution of fracture density. The distribution maps of predicted fracture density in the Chang 71 and 72 members are obtained, indicating that the tectonic movement in the Late Mesozoic has a greater influence on the fracture development than that in the Cenozoic. The average fracture densities in the Chang 71 and 72 members are similar, but there are differences in their distributions. Compared with other geological elements, the lithology and the layer thickness are the primary factors that control the stress distribution in the study area, which further determine the fracture distribution in the stable Ordos Basin. The predicted fracture density and the two-factor method can be utilized to guide future exploration in the tight-sand reservoirs.
基金financial supports are from the National Natural Science Foundation of China (41702130 and 41971335)China Postdoctoral Science Foundation (2017T100419 and 2019M660269)Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘The Yanchang Formation Chang 7 oil-bearing layer of the Ordos Basin is important in China for producing shale oil.The present-day in situ stress state is of practical implications for the exploration and development of shale oil;however,few studies are focused on stress distributions within the Chang 7 reservoir.In this study,the present-day in situ stress distribution within the Chang 7 reservoir was predicted using the combined spring model based on well logs and measured stress data.The results indicate that stress magnitudes increase with burial depth within the Chang 7 reservoir.Overall,the horizontal maximum principal stress(SHmax),horizontal minimum principal stress(Shmin) and vertical stress(Sv) follow the relationship of Sv≥SHmax>Shmin,indicating a dominant normal faulting stress regime within the Chang 7 reservoir of Ordos Basin.Laterally,high stress values are mainly distributed in the northwestern parts of the studied region,while low stress values are found in the southeastern parts.Factors influencing stress distributions are also analyzed.Stress magnitudes within the Chang 7 reservoir show a positive linear relationship with burial depth.A larger value of Young's modulus results in higher stress magnitudes,and the differential horizontal stress becomes higher when the rock Young's modulus grows larger.
基金Supported by China National Science and Technology Major Project(2016ZX05050,2017ZX05001002-008)the PetroChina Science and Technology Major Project(2016E-0501)
文摘Based on analysis of main controlling factors of Chang 9, the source rock, driving force of migration, migration and accumulation modes, reservoir forming stages and model and enrichment law of Chang 9 reservoir were examined. The study showed that the oil of Chang 9 reservoir in the Jiyuan and Longdong(Eastern Gansu) areas came primarily from the source rock of Chang 7 Member, but the oil of Chang 9 reservoir in the Zhidan area came primarily from the source rock of Chang 9 Member. There developed lithologic-structural oil reservoirs in Gufengzhuang-Mahuangshan area in northwest Jiyuan, structural-lithologic oil reservoirs in east Jiyuan, and lithologic reservoirs in Huachi–Qingcheng area and Zhidan area. The overpressure of Chang 7 Member was the driving force of oil migration. The burial history showed that Chang 9 Member experienced two stages of reservoir forming, the reservoir formed in the Late Jurassic was smaller in charging scope and scale, and the Early Cretaceous was the period when the source rock generated oil and gas massively and the Chang 9 reservoir came into being. Along with the tectonic movements, Chang 7 bottom structure turned from high in the west and lower in the East in the sedimentary stage to high in the east and lower in the west in the hydrocarbon accumulation stage and at last to gentle western-leaning monoclinal structure at present. In Early Cretaceous, the Chang 7 bottom structure was the lowest in the west of Huanxian-Huachi-Wuqi-Dingbian areas, so the oil migrated laterally towards the higher positions around after entering the reservoir. In the main reservoir forming period, Chang 7 bottom had an ancient anticline in Mahuangshan-Hongjingzi area of west Jiyuan, controlling the oil reservoir distribution in west Jiyuan.
基金Project(41102058)supported by the National Natural Science Foundation of ChinaProject(2011ZX05006-003)supported by National Oil&Gas Major Project of China+1 种基金Project(U1262203)supported by Key Program for National Natural Science Foundation of ChinaProject(LW140101A)supported by Excellent Doctoral Dissertation Program of China University of Petroleum
文摘Petrographic analysis combined with various techniques, such as thin section identification, petro-physical property testing, mercury penetration, oil testing results, was used to assess basic reservoir characteristics of deep strata in Palaeogene in the northern steep slope zone of the Bonan sag, China. The formation mechanisms of high quality reservoirs in deep strata were discussed according to evolution characteristics of paleopressures and paleofluids in geological period. The deep reservoirs have poor physical properties and mainly develop extra-low porosity, extra-low and ultra-low permeability reservoirs. Reservoir spaces mainly consist of secondary pores and overpressure fractures. Early overpressure, early hydrocarbon filling and dissolution by early organic acids are the major formation mechanisms of high quality reservoirs. The conglomerate in inner fan which had a poor primary physical property mainly experienced strong compaction and calcareous matrix recrystallization. The physical properties of the inner fan were poor with weak dissolution because of poor mobility of fluid. The reservoirs mainly are type IV reservoirs and the distribution extends with the burial depth. The braided channel reservoirs in the middle fan had relative good primary physical properties and strong ability to resist compaction which favored the preservation of primary pores. Large amounts of the secondary porosities were created due to dissolution by early organic acids. A series of micro-fractures generated by early overpressures would be important migration pathways for hydrocarbon and organic acids. Furthermore, early overpressures had retarded maturation of organic matters and organic acids which had flowed into reservoirs already and could keep in acid environment for a long time. This process would contribute significantly to reinforcing the dissolution and enhancing the reservoir quality. The braided channel reservoirs were charged with high oil saturation preferentially by early hydrocarbon filling which could inhibit later cementation. Therefore, the braided channel reservoirs develop a great quantity of reservoir spaces with type I, type II and type III reservoirs in the majority in the deep strata. With the burial depth, distributions of type I and type II reservoirs are narrowed and distribution of type III reservoirs decreases first and then extends. The reservoirs both in outer fan and in interdistributary of the middle fan have extremely poor physical properties because of extensive carbonate cementation. The type of the reservoirs mainly is type IV.
基金funded by a project entitled Middle-Paleozoic Hydrocarbon Accumulation Conditions and Favorable Area Evaluation of the Subei-South Yellow Sea Basin (P21086-6), initiated by the Sinopec Oilfield Service Corporation.
文摘The Yancheng Sag is a favorable exploration area in the Subei Basin. However, the key geological understanding of the natural gas source and reservoir formation characteristics of the sag is still controversial. Based on a set of organic geochemical experiments conducted on natural gas and associated condensate oil of the first member of the Funing Formation (E1f1) in well YCh5 and well data analysis, the oil-gas resources and reservoir formation model in the Zhujiadun gas reservoir in the Yancheng Sag, Subei Basin, were investigated. The results of this study are as follows. (1) The natural gas in the Zhujiadun gas reservoir is dry gas with high methane content, low heavy hydrocarbon content, and high maturity. The characteristics of carbon and hydrogen isotopes in the natural gas indicate that the natural gas is oil-cracked gas, which mainly originates from the source rocks of the Permian Qixia Formation. (2) The condensate oil from well YCh5 with a high degree of maturity has a high pristane/phytane ratio, low gamma-paraffin abundance, and low tricyclic terpene abundance, indicating a mixture of the Upper Paleozoic condensate oil and Cenozoic crude oil. The saturated and aromatic hydrocarbons have similar δ13C values to the Cenozoic continental crude oil. These features suggest two sources of condensate oil. (3) Oils generated from the source rocks of the Qixia Formation were cracked into highly mature gas after deep burial, which migrated along large faults into the sandstones of the E1f1 and K1t1 members. This type of reservoir was effectively preserved beneath the overlying mudstone cap rocks. Therefore, it can be inferred that a play fairway might occur in the eastern zone of the faults connected to the Paleozoic source rocks in the Yancheng Sag since this zone has similar petroleum geological conditions to well YCh5. Therefore, this zone is a favorable area for further exploration.