Although water has the central function of the bloodstream in the biosphere especially in arid or semi-arid regions such as Yah'an region in northwestern China, yet the very limited attention is paid to the role of t...Although water has the central function of the bloodstream in the biosphere especially in arid or semi-arid regions such as Yah'an region in northwestern China, yet the very limited attention is paid to the role of the water-related processes in ecosystem. In this research, based on continuous nearly 50-year data including runoff volume, sediment discharge as well as sediment accretion from hydrographic stations, and 10-year information of water quality from pollution monitoring stations, the method for measuring in-stream flow requirement has been put forward supported by experiential models and GIS spatial analysis. Additionally, the changes of in-stream flow requirement for environment and economic development have been addressed from spatial-temporal dimensions. The results show that: (1) According to the central streams in Yan'an region, mean annual in-stream flow requirement reaches 1.0619 billion m^3, and the surface water for economic exploitation is 0.2445 billion m3 (2) Mean annual in-stream flow requirement for sediment transfers in flood period occupies over 80% of the integrated volume in a year. (3) From the 1950s to 1970s, in-stream flow requirement for sediment transfers is comparatively higher, while from the 1980s to 1990s, this requirement presents a decreasing tendency.展开更多
In this study, we attempt to put forward a conception of landscape ecological niche, enlightened by international scholars on extending the ecological niche theory from spatial niche to functional niche. That is helpf...In this study, we attempt to put forward a conception of landscape ecological niche, enlightened by international scholars on extending the ecological niche theory from spatial niche to functional niche. That is helpful for comprehensively appraising landscape spatial patterns and ecological functions, also, presents a new method for analyzing landscape features from multidimensional aspects. The practice process is demonstrated by taking Yan'an region in northwestern China as a case. Firstly, the indices system including spatial attribute and functional attribute is established for assessing landscape ecological niche. Additionally, two-dimensional figures are drawn for comparing the spatio-temporal features of landscape ecological niche in 1987 and 2000 among the 13 administrative counties. The results show that from 1987 to 2000, towards Yan'an region, spatial attribute value of landscape ecological niche changes from 1.000 to 1.178 with an obvious increment, and functional attribute value changes from 0.989 to 1.069 with a little increment, both of which enhance the regional landscape ecological niche. Towards each county, spatial attribute value of landscape ecological niche increases to different extent while functional attribute value changes dissimilarly with an increment or a decrement.展开更多
The Late Permian was marked by a series of important geological events and widespread organic-rich black shale depositions,acting as important unconventional hydrocarbon source rocks.However,the mechanism of organic m...The Late Permian was marked by a series of important geological events and widespread organic-rich black shale depositions,acting as important unconventional hydrocarbon source rocks.However,the mechanism of organic matter(OM)enrichment throughout this period is still controversial.Based on geochemical data,the marine redox conditions,paleogeographic and hydrographic environment,primary productivity,volcanism,and terrigenous input during the Late Permian in the Lower Yangtze region have been studied from the Putaoling section,Chaohu,to provide new insights into OM accumulation.Five Phases are distinguished based on the TOC and environmental variations.In Phase I,anoxic conditions driven by water restriction enhanced OM preservation.In Phase II,euxinic and cycling hydrological environments were the two most substantial controlling factors for the massive OM deposition.During Phase III,intensified terrestrial input potentially diluted the OM in sediment and the presence of oxygen in bottom water weakened the preservation condition.Phase IV was characterized by a relatively higher abundance of mercury(Hg)and TOC(peak at 16.98 wt%),indicating that enhanced volcanism potentially stimulated higher productivity and a euxinic environment.In Phase V,extremely lean OM was preserved as a result of terrestrial dilutions and decreasing primary productivity.Phases I,II and IV are characterized as the most prominent OM-rich zones due to the effective interactions of the controlling factors,namely paleogeographic,hydrographic environment,volcanism,and redox conditions.展开更多
Indicating the tectonic features of the Hanshan-Wuwei basin can reconstruct the framework of the basins formed in Mesozoic and further understand the Mesozoic tectonic evolution of the South China Block.Studies on sur...Indicating the tectonic features of the Hanshan-Wuwei basin can reconstruct the framework of the basins formed in Mesozoic and further understand the Mesozoic tectonic evolution of the South China Block.Studies on surface structure,regional stress field and deep geophysical characteristics of the Mesozoic Hanshan-Wuwei basin in Lower Yangtze region were carried out.NE-NNE trending folds and faults developed in the northern margin of the basins.The reconstruction of tectonic stress fields indicates four stress stages dominating the basins'evolution including NW-SE compression,N-S compression,NW-SE extension and NWW-SEE compression.2D seismic profiles reveal coexistence of thrust,strike-slip and normal faults in the basin.Combined with regional geological studies,the geodynamic processes for the formation of the Hanshan-Wuwei basin can be divided into five stages:1)During the Late Triassic,EW trending foreland basin was formed by N-S compression;2)From Mid-Jurassic to Late Jurassic,continuous compression strengthened the foreland deformation and formed thrust nappes.In this stage,the integrated foreland basin was compartmentalized or fragmented,and transferred to the broken foreland basin;3)NE-trending sinistral strike-slip movement at the beginning of the Early Cretaceous;4)Regional extension resulted in normal faults and rift basins developing in the Late Cretaceous;5)The NWW-SEE compression at the end of the Late Cretaceous caused NW sinistral strike-slip faults to form,which partly transformed the rift basin.展开更多
The Indian Himalayan region is frequently experiencing climate change-induced landslides.Thus,landslide susceptibility assessment assumes greater significance for lessening the impact of a landslide hazard.This paper ...The Indian Himalayan region is frequently experiencing climate change-induced landslides.Thus,landslide susceptibility assessment assumes greater significance for lessening the impact of a landslide hazard.This paper makes an attempt to assess landslide susceptibility in Shimla district of the northwest Indian Himalayan region.It examined the effectiveness of random forest(RF),multilayer perceptron(MLP),sequential minimal optimization regression(SMOreg)and bagging ensemble(B-RF,BSMOreg,B-MLP)models.A landslide inventory map comprising 1052 locations of past landslide occurrences was classified into training(70%)and testing(30%)datasets.The site-specific influencing factors were selected by employing a multicollinearity test.The relationship between past landslide occurrences and influencing factors was established using the frequency ratio method.The effectiveness of machine learning models was verified through performance assessors.The landslide susceptibility maps were validated by the area under the receiver operating characteristic curves(ROC-AUC),accuracy,precision,recall and F1-score.The key performance metrics and map validation demonstrated that the BRF model(correlation coefficient:0.988,mean absolute error:0.010,root mean square error:0.058,relative absolute error:2.964,ROC-AUC:0.947,accuracy:0.778,precision:0.819,recall:0.917 and F-1 score:0.865)outperformed the single classifiers and other bagging ensemble models for landslide susceptibility.The results show that the largest area was found under the very high susceptibility zone(33.87%),followed by the low(27.30%),high(20.68%)and moderate(18.16%)susceptibility zones.The factors,namely average annual rainfall,slope,lithology,soil texture and earthquake magnitude have been identified as the influencing factors for very high landslide susceptibility.Soil texture,lineament density and elevation have been attributed to high and moderate susceptibility.Thus,the study calls for devising suitable landslide mitigation measures in the study area.Structural measures,an immediate response system,community participation and coordination among stakeholders may help lessen the detrimental impact of landslides.The findings from this study could aid decision-makers in mitigating future catastrophes and devising suitable strategies in other geographical regions with similar geological characteristics.展开更多
Based on daily observation data of the Three Gorges Region(TGR)of the Yangtze River basin and global reanalysis data,the climate characteristics,climate events,and meteorological disasters of the TGR in 2022 and 2023 ...Based on daily observation data of the Three Gorges Region(TGR)of the Yangtze River basin and global reanalysis data,the climate characteristics,climate events,and meteorological disasters of the TGR in 2022 and 2023 were analyzed.For the TGR,the average annual temperature for 2022 and 2023 was 0.8℃ and 0.4℃ higher than normal,respectively,making them the two warmest years in the past decade.In 2022,the TGR experienced its warmest summer on record.The average air temperature was 2.4℃ higher than the average,and there were 24.8 days of above-average high temperature days during summer.Rainfall in the TGR varied significantly between 2022 and 2023.Annual rainfall was 18.4%below normal and drier than normal in most parts of the region.In contrast,the precipitation in 2023 was considerably higher than the long-term average,and above normal for almost the entire year.The average wind speed exhibited minimal variation between the two years.However,the number of foggy days and relative humidity increased in 2023 compared to 2022.In 2022–2023,the TGR mainly experienced meteorological disasters such as extreme high temperatures,regional heavy rain and flooding,overcast rain,and inverted spring chill.Analysis indicates that the abnormal western Pacific subtropical high and the abnormal persistence of the eastward-shifted South Asian high were the two important drivers of the durative enhancement of record-breaking high temperature in the summer of 2022.展开更多
Establishing the Greater Food Approach and promoting the Yangtze River Economic Belt s national major regional development strategy can better support and serve the agricultural power and Chinese-style modernization.T...Establishing the Greater Food Approach and promoting the Yangtze River Economic Belt s national major regional development strategy can better support and serve the agricultural power and Chinese-style modernization.This paper introduces the characteristics of fruit industry in 16 autonomous prefectures and 47 autonomous counties under the jurisdiction of the Yangtze River Economic Belt.It studies the intellectual property resources of brand marks from the aspects of geographical indications,collective trademarks,certification trademarks,well-known trademarks in China and national design patents,and analyzes the main problems of brand and high-quality development of fruit industry in these ethnic autonomous areas.Finally,it puts forward some strategies,such as improving the protection of intellectual property rights of geographical indications,using intellectual property rights of brand signs,building modern seed industry upgrading project,drawing lessons from the experience of thousand villages demonstration project,ensuring that large-scale poverty does not occur,and building a diversified food supply system.展开更多
The ecological footprint was employed as a quantitative indicator of resource inputs,enabling a detailed account of the structure of biological resources and energy occupancy,as well as the variation of resource produ...The ecological footprint was employed as a quantitative indicator of resource inputs,enabling a detailed account of the structure of biological resources and energy occupancy,as well as the variation of resource productivity in the Yangtze River Delta(YRD)Region.From 2004 to 2018,there were notable variations in the ecological productivity of different types of land on basis of China’s equilibrium factor across the three provinces and one city in the YRD region.Jiangsu Province exhibited the highest ecological productivity of arable land,while Anhui Province exhibited the highest ecological productivity of forest land.Shanghai City exhibited the highest ecological productivity of pasture land,while Zhejiang Province exhibited the highest ecological productivity of water area.In 2018,the proportion of arable land within the total ecological carrying capacity of the YRD region reached 74.35%.Furthermore,the contribution of Jiangsu and Anhui provinces to the YRD’s total ecological carrying capacity was 41.36%and 41.26%,respectively.In the construction of a new development pattern in the YRD region,which is dominated by the domestic cycle as the main body and mutually reinforced by domestic and international double-cycle,the YRD region should combine the utilization of natural forces with innovation in science,technology and cooperation mechanisms.Furthermore,the government should guide the concentration of social capital towards green industries.It is also recommended that the moderate reduction of ecological footprints should be encouraged,and that the security of biological resources and energy,the leadership in the field of cutting-edge science and technology should be ensured in YRD region.This will facilitate the formation of a new development pattern of higher-quality integration at the national level firstly.展开更多
正确认识不同区域能量和水分循环特征是研究局地地气相互作用及准确预测区域天气,气候变化的关键.为了研究属于干旱/半干旱气候的青藏高原(TP)和湿润/半湿润气候的长江流域(YRR)之间地表能量和水分交换的异同,本文对比分析了两个区域8...正确认识不同区域能量和水分循环特征是研究局地地气相互作用及准确预测区域天气,气候变化的关键.为了研究属于干旱/半干旱气候的青藏高原(TP)和湿润/半湿润气候的长江流域(YRR)之间地表能量和水分交换的异同,本文对比分析了两个区域8个不同地表类型(包括高山荒漠,高山草地,(平原)城市和(平原)草地等)观测站点的地表辐射和能量通量数据.结果显示:(1)TP由于高原大气层稀薄且空气洁净,年平均入射短波辐射为251.3W m^(-2),是YRR的1.7倍.加之高原地表反照率高导致反射辐射(59.6 W m^(-2))是YRR的2.87倍.入射及出射的长波辐射为231.5和338.0 W m^(-2),分别为YRR的0.64和0.83.而两个区域的净辐射差异不大;(2)草地站更多的潜热释放使得地表总加热效率高于城市和高山荒漠,TP和YRR的草地站的年平均潜热分别为35.0和38.8 W m^(-2),而植被稀疏且土壤干燥的高山荒漠地区感热最大,年平均感热为42.1 W m^(-2);其次是城市下垫面,其年平均感热为37.7 W m^(-2).研究结果揭示了不同气候背景下典型下垫面地气相互作用特征,为地气相互作用过程深入分析奠定了基础.展开更多
Regional inequality significantly influences sustainable development and human well-being.In China,there exists pronounced regional disparities in economic and digital advancements;however,scant research delves into t...Regional inequality significantly influences sustainable development and human well-being.In China,there exists pronounced regional disparities in economic and digital advancements;however,scant research delves into the interplay between them.By analyzing the economic development and digitalization gaps at regional and city levels in China,extending the original Cobb-Douglas production function,this study aims to evaluate the impact of digitalization on China's regional inequality using seemingly unrelated regression.The results indicate a greater emphasis on digital inequality compared to economic disparity,with variable coefficients of 0.59 for GDP per capita and 0.92 for the digitalization index over the past four years.However,GDP per capita demonstrates higher spatial concentration than digitalization.Notably,both disparities have shown a gradual reduction in recent years.The southeastern region of the Hu Huanyong Line exhibits superior levels and rates of economic and digital advancement in contrast to the northwestern region.While digitalization propels economic growth,it yields a nuanced impact on achieving balanced regional development,encompassing both positive and negative facets.Our study highlights that the marginal utility of advancing digitalization is more pronounced in less developed regions,but only if the government invests in the digital infrastructure and education in these areas.This study's methodology can be utilized for subsequent research,and our findings hold the potential to the government's regional investment and policy-making.展开更多
Herein,a novel interference-free surface-enhanced Raman spectroscopy(SERS)strategy based on magnetic nanoparticles(MNPs)and aptamer-driven assemblies was proposed for the ultrasensitive detection of histamine.A core-s...Herein,a novel interference-free surface-enhanced Raman spectroscopy(SERS)strategy based on magnetic nanoparticles(MNPs)and aptamer-driven assemblies was proposed for the ultrasensitive detection of histamine.A core-satellite SERS aptasensor was constructed by combining aptamer-decorated Fe_(3)O_(4)@Au MNPs(as the recognize probe for histamine)and complementary DNA-modified silver nanoparticles carrying 4-mercaptobenzonitrile(4-MBN)(Ag@4-MBN@Ag-c-DNA)as the SERS signal probe for the indirect detection of histamine.Under an applied magnetic field in the absence of histamine,the assembly gave an intense Raman signal at“Raman biological-silent”region due to 4-MBN.In the presence of histamine,the Ag@4-MBN@Ag-c-DNA SERS-tag was released from the Fe_(3)O_(4)@Au MNPs,thus decreasing the SERS signal.Under optimal conditions,an ultra-low limit of detection of 0.65×10^(-3)ng/mL and a linear range 10^(-2)-10^5 ng/mL on the SERS aptasensor were obtained.The histamine content in four food samples were analyzed using the SERS aptasensor,with the results consistent with those determined by high performance liquid chromatography.The present work highlights the merits of indirect strategies for the ultrasensitive and highly selective SERS detection of small biological molecules in complex matrices.展开更多
CO_(2)is one of the most important greenhouse gases(GHGs)in the earth’s atmosphere.Since the industrial era,anthropogenic activities have emitted excessive quantities of GHGs into the atmosphere,resulting in climate ...CO_(2)is one of the most important greenhouse gases(GHGs)in the earth’s atmosphere.Since the industrial era,anthropogenic activities have emitted excessive quantities of GHGs into the atmosphere,resulting in climate warming since the 1950s and leading to an increased frequency of extreme weather and climate events.In 2020,China committed to striving for carbon neutrality by 2060.This commitment and China’s consequent actions will result in significant changes in global and regional anthropogenic carbon emissions and therefore require timely,comprehensive,and objective monitoring and verification support(MVS)systems.The MVS approach relies on the top-down assimilation and inversion of atmospheric CO_(2)concentrations,as recommended by the Intergovernmental Panel on Climate Change(IPCC)Inventory Guidelines in 2019.However,the regional high-resolution assimilation and inversion method is still in its initial stage of development.Here,we have constructed an inverse system for carbon sources and sinks at the kilometer level by coupling proper orthogonal decomposition(POD)with four-dimensional variational(4DVar)data assimilation based on the weather research and forecasting-greenhouse gas(WRF-GHG)model.Our China Carbon Monito ring and Verification Support at the Regional level(CCMVS-R)system can continuously assimilate information on atmospheric CO_(2)and other related information and realize the inversion of regional and local anthropogenic carbon emissions and natural terrestrial ecosystem carbon exchange.Atmospheric CO_(2)data were collected from six ground-based monito ring sites in Shanxi Province,China to verify the inversion effect of regio nal anthropogenic carbon emissions by setting ideal and real experiments using a two-layer nesting method(at 27 and 9 km).The uncertainty of the simulated atmospheric CO_(2)decreased significantly,with a root-mean-square error of CO_(2)concentration values between the ideal value and the simulated after assimilation was close to 0.The total anthropogenic carbon emissions in Shanxi Province in 2019 from the assimilated inversions were approximately 28.6%(17%-38%)higher than the mean of five emission inventories using the bottomup method,showing that the top-down CCMVS-R system can obtain more comprehensive information on anthropogenic carbon emissions.展开更多
Explosive cyclones(ECs)occur frequently over the Kuroshio/Kuroshio Extension region.The most rapidly intensified EC over the Kuroshio/Kuroshio Extension region during the 42 years(1979-2020)of cold seasons(October-Apr...Explosive cyclones(ECs)occur frequently over the Kuroshio/Kuroshio Extension region.The most rapidly intensified EC over the Kuroshio/Kuroshio Extension region during the 42 years(1979-2020)of cold seasons(October-April)was studied to reveal the variations of the key factors at different explosive-developing stages.This EC had weak low-level baroclinicity,mid-level cyclonic-vorticity advection,and strong low-level water vapor convergence at the initial explosive-developing stage.The low-level baroclinicity and mid-level cyclonic-vorticity advection increased substantially during the maximum-deepening-rate stage.The diagnostic analyses using the Zwack-Okossi equation showed that diabatic heating was the main contributor to the initial rapid intensification of this EC.The cyclonic-vorticity advection and warm-air advection enhanced rapidly in the middle and upper troposphere and contributed to the maximum rapid intensification,whereas the diabatic heating weakened slightly in the mid-low troposphere.The relative contribution of the diabatic heating decreased from the initial explosive-developing stage to the maximum-deepening-rate stage due to the enhancement of other factors(the cyclonic-vorticity advection and warm-air advection).Furthermore,the physical factors contributing to this EC varied with the explosive-developing stage.The non-key factors at the initial explosive-developing stage need attention to forecast the rapid intensification.展开更多
Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the i...Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the influence of the East Asian westerly jet(EAWJ)on TRSR rainfall.A strong correlation is found between TRSR summer precipitation and the Jet Zonal Position Index(JZPI)of the EAWJ from 1961 to 2019(R=0.619,p<0.01).During periods when a positive JZPI indicates a westward shift in the EAWJ,enhanced water vapor anomalies,warmer air,and low-level convergence anomalies contribute to increased TRSR summer precipitation.Using empirical orthogonal function and regression analyses,this research identifies the influence of large-scale circulation anomalies associated with the Atlantic–Eurasian teleconnection(AEA)from the North Atlantic(NA).The interdecadal variability between the NA and central tropical Pacific(CTP)significantly affects TRSR precipitation.This influence is mediated through the AEA via a Rossby wave train extending eastward along the EAWJ,and another south of 45°N.Moreover,the NA–CTP Opposite Phase Index(OPI),which quantifies the difference between the summer mean sea surface temperatures of the NA and the CTP,is identified as a critical factor in modulating the strength of this teleconnection and influencing the zonal position of the EAWJ.展开更多
Savanna, semi-deserts, and hot deserts characterize the Saharo-Arabian region, which includes Morocco, Mauretania, Algeria, Tunisia, Libya, Egypt, Palestine, Kuwait, Saudi Arabia, Qatar, Bahrain, the United Arab Emira...Savanna, semi-deserts, and hot deserts characterize the Saharo-Arabian region, which includes Morocco, Mauretania, Algeria, Tunisia, Libya, Egypt, Palestine, Kuwait, Saudi Arabia, Qatar, Bahrain, the United Arab Emirates, Oman, Yemen, southern Jordan, Syria, Iraq, Iran, Afghanistan, Pakistan, and northern India. Its neighboring regions, the Sudano-Zambezian region belonging to the Paleotropical Kingdom and the Mediterranean and Irano-Turanian regions included in the Holarctic Kingdom, share a large portion of their flora with the Saharo-Arabian region. Despite the widespread acknowledgment of the region's global importance for plant diversity, an up to date list of the Saharo-Arabian endemics is still unavailable. The available data are frequently insufficient or out of date at both the whole global and the national scales. Therefore, the present study aims at screening and verifying the Saharo-Arabian endemic plants and determining the phytogeographical distribution of these taxa in the Egyptian flora. Hence, a preliminary list of 429 Saharo-Arabian endemic plants in Egypt was compiled from the available literature. Indeed, by excluding the species that were recorded in any countries or regions outside the Saharo-Arabian region based on different literature, database reviews, and websites, the present study has reduced this number to 126 taxa belonging to 87 genera and 37 families. Regarding the national geographic distribution, South Sinai is the richest region with 83 endemic species compared with other eight phytogeographic regions in Egypt, followed by the Isthmic Desert(the middle of Sinai Peninsula, 53 taxa). Sahara regional subzone(SS1) distributes all the 126 endemic species, Arabian regional subzone(SS2) owns 79 taxa, and Nubo-Sindian subzone(SS3) distributes only 14 endemics. Seven groups were recognized at the fourth level of classification as a result of the application of the two-way indicator species analysis(TWINSPAN) to the Saharo-Arabian endemic species in Egypt, i.e., Ⅰ Asphodelus refractus group, Ⅱ Agathophora alopecuroides var. papillosa group, Ⅲ Anvillea garcinii group, Ⅳ Reseda muricata group, V Agathophora alopecuroides var. alopecuroides group, Ⅵ Scrophularia deserti group, and Ⅶ Astragalus schimperi group. It's crucial to clearly define the Saharo-Arabian endemics and illustrate an updated verified database of these taxa for a given territory for providing future management plans that support the conservation and sustainable use of these valuable species under current thought-provoking devastating impacts of rapid anthropogenic and climate change in this region.展开更多
The dependence of groundwater quality on borehole depth is usually debatable in groundwater studies, especially in complex geological formations where aquifer characteristics vary spatially with depth. This study ther...The dependence of groundwater quality on borehole depth is usually debatable in groundwater studies, especially in complex geological formations where aquifer characteristics vary spatially with depth. This study therefore seeks to investigate the relationship between borehole depth and groundwater quality across the granitoid aquifers within the Birimian Supergroup in the Ashanti Region. Physicochemical analysis records of groundwater quality data were collected from 23 boreholes of public and private institutions in the Ashanti Region of Ghana, and the parametric values of iron, fluoride, total hardness, pH, nitrate, and nitrite were used to study the groundwater quality-depth relationship. The results showed that the depth-to-groundwater quality indicated a marginal increase in water quality in the range of 30 to 50 m, which is mathematically represented by the low-value correlation coefficient (r<sup>2</sup> = 0.026). A relatively significant increase occurs in the depth range of 50 to 80 m, which is given by a correlation coefficient of r<sup>2</sup> = 0.298. The mean percent parameter compatibility was 74%, 82%, 89%, and 97% at 50, 60, 70, and 80 m depths, respectively. The variations in groundwater quality per depth ratio ranged from 1.48, 1.37, 1.27, and 1.21 for 50, 60, 70, and 80 m depth, respectively. The recommended minimum borehole depth for excellent groundwater quality is suggested with a compatibility per meter depth ratio of 1.37. This results in a range between 50 and 70 m as the most desirable drilling depth for excellent groundwater quality within the granitoids of the Birimian Supergroup of the Ashanti Region in Ghana.展开更多
Method: In Cameroon limited data are available regarding the prevalence of enteric bacteria associated with table egg consuming infections. As such, a situational-based study was performed in patients with complains o...Method: In Cameroon limited data are available regarding the prevalence of enteric bacteria associated with table egg consuming infections. As such, a situational-based study was performed in patients with complains of stomach disorders after egg consumption. Data related to sociodemographic characteristics and other factors were collected using a structured based questionnaire. Stool culture of utmost importance in stomach disorders patients and serum were collected for typhoid serological test. Results: A total of 207 participants took part in the survey, Results indicated nontyphoidal Salmonella infections were highest in the 3 areas of study with Mfoundi (73.44%) having the highest level of infection compared to other bacterial infection. other enteric bacteria associated to this infection were E. coli serotype 157, Aeromonas, Citrobacter freundii, Enterobacter cloaca and typhi salmonella. Meanwhile salmonelosis caused by typhic salmonella had highest prevalence in the Lekie Division (13.11%) as a result of poor hygienic practices associated with the conservation and preparation of eggs, Stool culture was observed to detect more positive cases in the diagnosis of typhoid fever than Widal test, but with no statistically significant (p > 0.05) difference between the stool culture and Widal test in the 3 areas of study. Conclusion: this study revealed that egg consumers are pruned to enteric bacterial and salmonella infections depending on how and where egg is consumed.展开更多
The present study has been carried out on a total of 50 available plant species to assess their dust-capturing capacity and biochemical performances in and around open cast granite mine areas of Jhansi district and Bu...The present study has been carried out on a total of 50 available plant species to assess their dust-capturing capacity and biochemical performances in and around open cast granite mine areas of Jhansi district and Bundelkhand University campus treated as control site. Plant species existing under a polluted environment for a long time may be considered as potentially resistant species and recommended for green belt design in mining areas, especially to cope with dust pollution. Results showed the pollution level, especially of mining-originated dust particles holding capacity of leaves and effects of different biochemical parameters (Total Chlorophyll, Protein and Carotenoid) of existing plant species both from mining areas as well as from Bundelkhand University campus. Based on their performances, Tectona grandis L., Ficus hispida L., Calotropis procera Aiton., Butea monosperma Lam. and Ficus benghalensis L., etc. are highly tolerant species while Ficus infectoria L., Artocarpus heterophyllus Lam., Ipomoea purpurea L., Allianthus excelsa Roxb. and Bauhinia variegata L. are intermediate tolerant species. T. grandis had shown the highest dust-holding capacity (2.566 ± 0.0004 mg/cm2) whereas Albizia procera (0.018 ± 0.0002 mg/cm2) was found to be the lowest dust-holding capacity. Our findings also showed that the T. grandis and F. hispida have significant dust deposition with minimal effect of dust on their leaf chlorophyll (17.447 ± 0.019 mg/g and 14.703 ± 0.201 mg/g), protein (0.699 ± 0.001 mg/g and 0.604 ± 0.002 mg/g) and carotenoid (0.372 ± 0.003 mg/g and 0.354 ± 0.003 mg/g) content respectively among all selected plant species. Therefore, in the present investigation, plant species with high tolerance to high dust-holding capacity on their leaf surfaces are preferable for green corridors as open cast granite mines and their adjacent areas.展开更多
After the integration of large-scale DistributedGeneration(DG)into the distribution network,the randomness and volatility of its output result in a reduction of spatiotemporal alignment between power generation and de...After the integration of large-scale DistributedGeneration(DG)into the distribution network,the randomness and volatility of its output result in a reduction of spatiotemporal alignment between power generation and demand in the distribution network,exacerbating the phenomenon of wind and solar power wastage.As a novel power system model,the fundamental concept of Regional Autonomous Power Grids(RAPGs)is to achieve localized management and energy autonomy,thereby facilitating the effective consumption of DGs.Therefore,this paper proposes a distributed resource planning strategy that enhances the autonomy capabilities of regional power grids by considering multiple evaluation indexes for autonomy.First,a regional Energy Storage(ES)configuration strategy is proposed.This strategy can select a suitable reference value for the upper limit of ES configuration based on the regional load andDGoutput to maximize the elimination of source load deviations in the region as the upper limit constraint of ES capacity.Then,a control strategy for regional ES is proposed,the charging and discharging reference line of ES is set,and multiple autonomy and economic indexes are used as objective functions to select different proportions of ES to control the distributed resources of the regional power grid and establish evaluation indexes of the internal regional generation and load power ratio,the proportion of power supply matching hours,new energy consumption rate and tie line power imbalance outside the region to evaluate changes in the regional autonomy capabilities.The final simulation results showthat in the real regional grid example,the planning method in the planning year in the region of the overall power supply matching hour ratio and new energy consumption rate increased by 3.9%and 4.8%on average,and the power imbalance of the tie line decreased by 7.8%on average.The proposed planning approach enables the maximization of regional autonomy while effectively smoothing the fluctuation of power exchange between the regional grid and the higher-level grid.This presents a rational and effective planning solution for the regional grid,facilitating the coordinated development between the region and the distribution network.展开更多
El Nino-Southern Oscillation(ENSO),the leading mode of global interannual variability,usually intensifies the Hadley Circulation(HC),and meanwhile constrains its meridional extension,leading to an equatorward movement...El Nino-Southern Oscillation(ENSO),the leading mode of global interannual variability,usually intensifies the Hadley Circulation(HC),and meanwhile constrains its meridional extension,leading to an equatorward movement of the jet system.Previous studies have investigated the response of HC to ENSO events using different reanalysis datasets and evaluated their capability in capturing the main features of ENSO-associated HC anomalies.However,these studies mainly focused on the global HC,represented by a zonal-mean mass stream function(MSF).Comparatively fewer studies have evaluated HC responses from a regional perspective,partly due to the prerequisite of the Stokes MSF,which prevents us from integrating a regional HC.In this study,we adopt a recently developed technique to construct the three-dimensional structure of HC and evaluate the capability of eight state-of-the-art reanalyses in reproducing the regional HC response to ENSO events.Results show that all eight reanalyses reproduce the spatial structure of HC responses well,with an intensified HC around the central-eastern Pacific but weakened circulations around the Indo-Pacific warm pool and tropical Atlantic.The spatial correlation coefficient of the three-dimensional HC anomalies among the different datasets is always larger than 0.93.However,these datasets may not capture the amplitudes of the HC responses well.This uncertainty is especially large for ENSO-associated equatorially asymmetric HC anomalies,with the maximum amplitude in Climate Forecast System Reanalysis(CFSR)being about 2.7 times the minimum value in the Twentieth Century Reanalysis(20CR).One should be careful when using reanalysis data to evaluate the intensity of ENSO-associated HC anomalies.展开更多
基金National Natural Science Foundation of China, No.40771019 Innovation Foundation of Shaanxi Normal University
文摘Although water has the central function of the bloodstream in the biosphere especially in arid or semi-arid regions such as Yah'an region in northwestern China, yet the very limited attention is paid to the role of the water-related processes in ecosystem. In this research, based on continuous nearly 50-year data including runoff volume, sediment discharge as well as sediment accretion from hydrographic stations, and 10-year information of water quality from pollution monitoring stations, the method for measuring in-stream flow requirement has been put forward supported by experiential models and GIS spatial analysis. Additionally, the changes of in-stream flow requirement for environment and economic development have been addressed from spatial-temporal dimensions. The results show that: (1) According to the central streams in Yan'an region, mean annual in-stream flow requirement reaches 1.0619 billion m^3, and the surface water for economic exploitation is 0.2445 billion m3 (2) Mean annual in-stream flow requirement for sediment transfers in flood period occupies over 80% of the integrated volume in a year. (3) From the 1950s to 1970s, in-stream flow requirement for sediment transfers is comparatively higher, while from the 1980s to 1990s, this requirement presents a decreasing tendency.
基金National Natural Science Foundation of China, No.40371003 Innovation Foundation of Shaanxi Normal University
文摘In this study, we attempt to put forward a conception of landscape ecological niche, enlightened by international scholars on extending the ecological niche theory from spatial niche to functional niche. That is helpful for comprehensively appraising landscape spatial patterns and ecological functions, also, presents a new method for analyzing landscape features from multidimensional aspects. The practice process is demonstrated by taking Yan'an region in northwestern China as a case. Firstly, the indices system including spatial attribute and functional attribute is established for assessing landscape ecological niche. Additionally, two-dimensional figures are drawn for comparing the spatio-temporal features of landscape ecological niche in 1987 and 2000 among the 13 administrative counties. The results show that from 1987 to 2000, towards Yan'an region, spatial attribute value of landscape ecological niche changes from 1.000 to 1.178 with an obvious increment, and functional attribute value changes from 0.989 to 1.069 with a little increment, both of which enhance the regional landscape ecological niche. Towards each county, spatial attribute value of landscape ecological niche increases to different extent while functional attribute value changes dissimilarly with an increment or a decrement.
基金supported by the Fundamental and Commonwealth Geological Survey of Oil and Gas of China(Grant No.DD 20221662)the National Natural Science Foundation of China(NSFC)Program(Grant No.42302124).
文摘The Late Permian was marked by a series of important geological events and widespread organic-rich black shale depositions,acting as important unconventional hydrocarbon source rocks.However,the mechanism of organic matter(OM)enrichment throughout this period is still controversial.Based on geochemical data,the marine redox conditions,paleogeographic and hydrographic environment,primary productivity,volcanism,and terrigenous input during the Late Permian in the Lower Yangtze region have been studied from the Putaoling section,Chaohu,to provide new insights into OM accumulation.Five Phases are distinguished based on the TOC and environmental variations.In Phase I,anoxic conditions driven by water restriction enhanced OM preservation.In Phase II,euxinic and cycling hydrological environments were the two most substantial controlling factors for the massive OM deposition.During Phase III,intensified terrestrial input potentially diluted the OM in sediment and the presence of oxygen in bottom water weakened the preservation condition.Phase IV was characterized by a relatively higher abundance of mercury(Hg)and TOC(peak at 16.98 wt%),indicating that enhanced volcanism potentially stimulated higher productivity and a euxinic environment.In Phase V,extremely lean OM was preserved as a result of terrestrial dilutions and decreasing primary productivity.Phases I,II and IV are characterized as the most prominent OM-rich zones due to the effective interactions of the controlling factors,namely paleogeographic,hydrographic environment,volcanism,and redox conditions.
基金supported by National Natural Science Foundation of China(Grant Nos.42372239,41872237 and 41573023)the projects of China Geological Survey(Grant Nos.DD20160180,DD20190083,DD20190043,DD20221633)。
文摘Indicating the tectonic features of the Hanshan-Wuwei basin can reconstruct the framework of the basins formed in Mesozoic and further understand the Mesozoic tectonic evolution of the South China Block.Studies on surface structure,regional stress field and deep geophysical characteristics of the Mesozoic Hanshan-Wuwei basin in Lower Yangtze region were carried out.NE-NNE trending folds and faults developed in the northern margin of the basins.The reconstruction of tectonic stress fields indicates four stress stages dominating the basins'evolution including NW-SE compression,N-S compression,NW-SE extension and NWW-SEE compression.2D seismic profiles reveal coexistence of thrust,strike-slip and normal faults in the basin.Combined with regional geological studies,the geodynamic processes for the formation of the Hanshan-Wuwei basin can be divided into five stages:1)During the Late Triassic,EW trending foreland basin was formed by N-S compression;2)From Mid-Jurassic to Late Jurassic,continuous compression strengthened the foreland deformation and formed thrust nappes.In this stage,the integrated foreland basin was compartmentalized or fragmented,and transferred to the broken foreland basin;3)NE-trending sinistral strike-slip movement at the beginning of the Early Cretaceous;4)Regional extension resulted in normal faults and rift basins developing in the Late Cretaceous;5)The NWW-SEE compression at the end of the Late Cretaceous caused NW sinistral strike-slip faults to form,which partly transformed the rift basin.
文摘The Indian Himalayan region is frequently experiencing climate change-induced landslides.Thus,landslide susceptibility assessment assumes greater significance for lessening the impact of a landslide hazard.This paper makes an attempt to assess landslide susceptibility in Shimla district of the northwest Indian Himalayan region.It examined the effectiveness of random forest(RF),multilayer perceptron(MLP),sequential minimal optimization regression(SMOreg)and bagging ensemble(B-RF,BSMOreg,B-MLP)models.A landslide inventory map comprising 1052 locations of past landslide occurrences was classified into training(70%)and testing(30%)datasets.The site-specific influencing factors were selected by employing a multicollinearity test.The relationship between past landslide occurrences and influencing factors was established using the frequency ratio method.The effectiveness of machine learning models was verified through performance assessors.The landslide susceptibility maps were validated by the area under the receiver operating characteristic curves(ROC-AUC),accuracy,precision,recall and F1-score.The key performance metrics and map validation demonstrated that the BRF model(correlation coefficient:0.988,mean absolute error:0.010,root mean square error:0.058,relative absolute error:2.964,ROC-AUC:0.947,accuracy:0.778,precision:0.819,recall:0.917 and F-1 score:0.865)outperformed the single classifiers and other bagging ensemble models for landslide susceptibility.The results show that the largest area was found under the very high susceptibility zone(33.87%),followed by the low(27.30%),high(20.68%)and moderate(18.16%)susceptibility zones.The factors,namely average annual rainfall,slope,lithology,soil texture and earthquake magnitude have been identified as the influencing factors for very high landslide susceptibility.Soil texture,lineament density and elevation have been attributed to high and moderate susceptibility.Thus,the study calls for devising suitable landslide mitigation measures in the study area.Structural measures,an immediate response system,community participation and coordination among stakeholders may help lessen the detrimental impact of landslides.The findings from this study could aid decision-makers in mitigating future catastrophes and devising suitable strategies in other geographical regions with similar geological characteristics.
基金supported by the National Key Research and Development Program of China[grant number 2023YFC3206001]the Three Gorges Project Comprehensive Monitoring Program for Operational Safety[grant number SK2023019]which funded by the Ministry of Water Resources of China.
文摘Based on daily observation data of the Three Gorges Region(TGR)of the Yangtze River basin and global reanalysis data,the climate characteristics,climate events,and meteorological disasters of the TGR in 2022 and 2023 were analyzed.For the TGR,the average annual temperature for 2022 and 2023 was 0.8℃ and 0.4℃ higher than normal,respectively,making them the two warmest years in the past decade.In 2022,the TGR experienced its warmest summer on record.The average air temperature was 2.4℃ higher than the average,and there were 24.8 days of above-average high temperature days during summer.Rainfall in the TGR varied significantly between 2022 and 2023.Annual rainfall was 18.4%below normal and drier than normal in most parts of the region.In contrast,the precipitation in 2023 was considerably higher than the long-term average,and above normal for almost the entire year.The average wind speed exhibited minimal variation between the two years.However,the number of foggy days and relative humidity increased in 2023 compared to 2022.In 2022–2023,the TGR mainly experienced meteorological disasters such as extreme high temperatures,regional heavy rain and flooding,overcast rain,and inverted spring chill.Analysis indicates that the abnormal western Pacific subtropical high and the abnormal persistence of the eastward-shifted South Asian high were the two important drivers of the durative enhancement of record-breaking high temperature in the summer of 2022.
基金Supported by Special Soft Science Research Project for Hubei Province Science and Technology Innovation Talents and Services(2022EDA060).
文摘Establishing the Greater Food Approach and promoting the Yangtze River Economic Belt s national major regional development strategy can better support and serve the agricultural power and Chinese-style modernization.This paper introduces the characteristics of fruit industry in 16 autonomous prefectures and 47 autonomous counties under the jurisdiction of the Yangtze River Economic Belt.It studies the intellectual property resources of brand marks from the aspects of geographical indications,collective trademarks,certification trademarks,well-known trademarks in China and national design patents,and analyzes the main problems of brand and high-quality development of fruit industry in these ethnic autonomous areas.Finally,it puts forward some strategies,such as improving the protection of intellectual property rights of geographical indications,using intellectual property rights of brand signs,building modern seed industry upgrading project,drawing lessons from the experience of thousand villages demonstration project,ensuring that large-scale poverty does not occur,and building a diversified food supply system.
基金Sponsored by Talent Project of Tongling University(2021tlxyrc27).
文摘The ecological footprint was employed as a quantitative indicator of resource inputs,enabling a detailed account of the structure of biological resources and energy occupancy,as well as the variation of resource productivity in the Yangtze River Delta(YRD)Region.From 2004 to 2018,there were notable variations in the ecological productivity of different types of land on basis of China’s equilibrium factor across the three provinces and one city in the YRD region.Jiangsu Province exhibited the highest ecological productivity of arable land,while Anhui Province exhibited the highest ecological productivity of forest land.Shanghai City exhibited the highest ecological productivity of pasture land,while Zhejiang Province exhibited the highest ecological productivity of water area.In 2018,the proportion of arable land within the total ecological carrying capacity of the YRD region reached 74.35%.Furthermore,the contribution of Jiangsu and Anhui provinces to the YRD’s total ecological carrying capacity was 41.36%and 41.26%,respectively.In the construction of a new development pattern in the YRD region,which is dominated by the domestic cycle as the main body and mutually reinforced by domestic and international double-cycle,the YRD region should combine the utilization of natural forces with innovation in science,technology and cooperation mechanisms.Furthermore,the government should guide the concentration of social capital towards green industries.It is also recommended that the moderate reduction of ecological footprints should be encouraged,and that the security of biological resources and energy,the leadership in the field of cutting-edge science and technology should be ensured in YRD region.This will facilitate the formation of a new development pattern of higher-quality integration at the national level firstly.
基金supported by the National Natural Science Foundation of China,under the project entitled“The study of land-atmosphere water and heat flux interaction over the complex terrain of the north and south slopes of the Qomolangma region"[grant number 42230610]a Ministry of Science and Technology of China project called“Landatmosphere interaction and its climate effect of the Second Tibetan Plateau Scientific Expedition and Research Program"[grant number 2019QzKK0103]the Youth Innovation Promotion Association of the Chinese Academy of Sciences[2022069].
文摘正确认识不同区域能量和水分循环特征是研究局地地气相互作用及准确预测区域天气,气候变化的关键.为了研究属于干旱/半干旱气候的青藏高原(TP)和湿润/半湿润气候的长江流域(YRR)之间地表能量和水分交换的异同,本文对比分析了两个区域8个不同地表类型(包括高山荒漠,高山草地,(平原)城市和(平原)草地等)观测站点的地表辐射和能量通量数据.结果显示:(1)TP由于高原大气层稀薄且空气洁净,年平均入射短波辐射为251.3W m^(-2),是YRR的1.7倍.加之高原地表反照率高导致反射辐射(59.6 W m^(-2))是YRR的2.87倍.入射及出射的长波辐射为231.5和338.0 W m^(-2),分别为YRR的0.64和0.83.而两个区域的净辐射差异不大;(2)草地站更多的潜热释放使得地表总加热效率高于城市和高山荒漠,TP和YRR的草地站的年平均潜热分别为35.0和38.8 W m^(-2),而植被稀疏且土壤干燥的高山荒漠地区感热最大,年平均感热为42.1 W m^(-2);其次是城市下垫面,其年平均感热为37.7 W m^(-2).研究结果揭示了不同气候背景下典型下垫面地气相互作用特征,为地气相互作用过程深入分析奠定了基础.
基金funded by National Natural Science Foundation of China(Grants No.42171210,42371194)Major Project of Key Research Bases for Humanities and Social Sciences Funded by the Ministry of Education of China(Grant No.22JJD790015).
文摘Regional inequality significantly influences sustainable development and human well-being.In China,there exists pronounced regional disparities in economic and digital advancements;however,scant research delves into the interplay between them.By analyzing the economic development and digitalization gaps at regional and city levels in China,extending the original Cobb-Douglas production function,this study aims to evaluate the impact of digitalization on China's regional inequality using seemingly unrelated regression.The results indicate a greater emphasis on digital inequality compared to economic disparity,with variable coefficients of 0.59 for GDP per capita and 0.92 for the digitalization index over the past four years.However,GDP per capita demonstrates higher spatial concentration than digitalization.Notably,both disparities have shown a gradual reduction in recent years.The southeastern region of the Hu Huanyong Line exhibits superior levels and rates of economic and digital advancement in contrast to the northwestern region.While digitalization propels economic growth,it yields a nuanced impact on achieving balanced regional development,encompassing both positive and negative facets.Our study highlights that the marginal utility of advancing digitalization is more pronounced in less developed regions,but only if the government invests in the digital infrastructure and education in these areas.This study's methodology can be utilized for subsequent research,and our findings hold the potential to the government's regional investment and policy-making.
基金financially supported by the National Natural Science Foundation of China(31972149)funding support from the MacDiarmid Institute for Advanced Materials and Nanotechnologythe Dodd-Walls Centre for Photonic and Quantum Technologies。
文摘Herein,a novel interference-free surface-enhanced Raman spectroscopy(SERS)strategy based on magnetic nanoparticles(MNPs)and aptamer-driven assemblies was proposed for the ultrasensitive detection of histamine.A core-satellite SERS aptasensor was constructed by combining aptamer-decorated Fe_(3)O_(4)@Au MNPs(as the recognize probe for histamine)and complementary DNA-modified silver nanoparticles carrying 4-mercaptobenzonitrile(4-MBN)(Ag@4-MBN@Ag-c-DNA)as the SERS signal probe for the indirect detection of histamine.Under an applied magnetic field in the absence of histamine,the assembly gave an intense Raman signal at“Raman biological-silent”region due to 4-MBN.In the presence of histamine,the Ag@4-MBN@Ag-c-DNA SERS-tag was released from the Fe_(3)O_(4)@Au MNPs,thus decreasing the SERS signal.Under optimal conditions,an ultra-low limit of detection of 0.65×10^(-3)ng/mL and a linear range 10^(-2)-10^5 ng/mL on the SERS aptasensor were obtained.The histamine content in four food samples were analyzed using the SERS aptasensor,with the results consistent with those determined by high performance liquid chromatography.The present work highlights the merits of indirect strategies for the ultrasensitive and highly selective SERS detection of small biological molecules in complex matrices.
基金supported by the General Project of Top-Design of Multi-Scale Nature-Social ModelsData Support and Decision Support System for NSFC Carbon Neutrality Major Project(42341202)the Basic Scientific Research Fund of the Chinese Academy of Meteorological Sciences(2021Z014)。
文摘CO_(2)is one of the most important greenhouse gases(GHGs)in the earth’s atmosphere.Since the industrial era,anthropogenic activities have emitted excessive quantities of GHGs into the atmosphere,resulting in climate warming since the 1950s and leading to an increased frequency of extreme weather and climate events.In 2020,China committed to striving for carbon neutrality by 2060.This commitment and China’s consequent actions will result in significant changes in global and regional anthropogenic carbon emissions and therefore require timely,comprehensive,and objective monitoring and verification support(MVS)systems.The MVS approach relies on the top-down assimilation and inversion of atmospheric CO_(2)concentrations,as recommended by the Intergovernmental Panel on Climate Change(IPCC)Inventory Guidelines in 2019.However,the regional high-resolution assimilation and inversion method is still in its initial stage of development.Here,we have constructed an inverse system for carbon sources and sinks at the kilometer level by coupling proper orthogonal decomposition(POD)with four-dimensional variational(4DVar)data assimilation based on the weather research and forecasting-greenhouse gas(WRF-GHG)model.Our China Carbon Monito ring and Verification Support at the Regional level(CCMVS-R)system can continuously assimilate information on atmospheric CO_(2)and other related information and realize the inversion of regional and local anthropogenic carbon emissions and natural terrestrial ecosystem carbon exchange.Atmospheric CO_(2)data were collected from six ground-based monito ring sites in Shanxi Province,China to verify the inversion effect of regio nal anthropogenic carbon emissions by setting ideal and real experiments using a two-layer nesting method(at 27 and 9 km).The uncertainty of the simulated atmospheric CO_(2)decreased significantly,with a root-mean-square error of CO_(2)concentration values between the ideal value and the simulated after assimilation was close to 0.The total anthropogenic carbon emissions in Shanxi Province in 2019 from the assimilated inversions were approximately 28.6%(17%-38%)higher than the mean of five emission inventories using the bottomup method,showing that the top-down CCMVS-R system can obtain more comprehensive information on anthropogenic carbon emissions.
基金jointly funded by the State Key Program of the National Natural Science Foundation of China(No.42130605)the Major Program of the National Natural Science Foundation of China(No.72293604)+5 种基金the Youth Innovative Talents Program of Guangdong Colleges and Universities(No.2022KQNCX026)the Natural Science Foundation of Shandong(No.ZR2022MD038)the Project of Enhancing School with Innovation of Guangdong Ocean University(No.230419106)the State Key Program of the National Natural Science Foundation of China(No.42130605)the National Natural Science Foundation of China(Nos.42275001,42276019,42205014,and 42275017)the Guangdong Ocean University Ph.D.Scientific Research Program(No.R19045).
文摘Explosive cyclones(ECs)occur frequently over the Kuroshio/Kuroshio Extension region.The most rapidly intensified EC over the Kuroshio/Kuroshio Extension region during the 42 years(1979-2020)of cold seasons(October-April)was studied to reveal the variations of the key factors at different explosive-developing stages.This EC had weak low-level baroclinicity,mid-level cyclonic-vorticity advection,and strong low-level water vapor convergence at the initial explosive-developing stage.The low-level baroclinicity and mid-level cyclonic-vorticity advection increased substantially during the maximum-deepening-rate stage.The diagnostic analyses using the Zwack-Okossi equation showed that diabatic heating was the main contributor to the initial rapid intensification of this EC.The cyclonic-vorticity advection and warm-air advection enhanced rapidly in the middle and upper troposphere and contributed to the maximum rapid intensification,whereas the diabatic heating weakened slightly in the mid-low troposphere.The relative contribution of the diabatic heating decreased from the initial explosive-developing stage to the maximum-deepening-rate stage due to the enhancement of other factors(the cyclonic-vorticity advection and warm-air advection).Furthermore,the physical factors contributing to this EC varied with the explosive-developing stage.The non-key factors at the initial explosive-developing stage need attention to forecast the rapid intensification.
基金supported by the 2nd Scientific Expedition to the Qinghai–Tibet Plateau[grant number 2019QZKK0102]the National Natural Science Foundation of China[grant number 42275045,41975012]+3 种基金the West Light Foundation of the Chinese Academy of Sciences[grant number xbzg-zdsys-202215]the Science and Technology Research Plan of Gansu Province[grant number 20JR10RA070]the Youth Innovation Promotion Association of the Chinese Academy of Sciences[grant number QCH2019004]iLEAPs(integrated Land Ecosystem–Atmosphere Processes Study).
文摘Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the influence of the East Asian westerly jet(EAWJ)on TRSR rainfall.A strong correlation is found between TRSR summer precipitation and the Jet Zonal Position Index(JZPI)of the EAWJ from 1961 to 2019(R=0.619,p<0.01).During periods when a positive JZPI indicates a westward shift in the EAWJ,enhanced water vapor anomalies,warmer air,and low-level convergence anomalies contribute to increased TRSR summer precipitation.Using empirical orthogonal function and regression analyses,this research identifies the influence of large-scale circulation anomalies associated with the Atlantic–Eurasian teleconnection(AEA)from the North Atlantic(NA).The interdecadal variability between the NA and central tropical Pacific(CTP)significantly affects TRSR precipitation.This influence is mediated through the AEA via a Rossby wave train extending eastward along the EAWJ,and another south of 45°N.Moreover,the NA–CTP Opposite Phase Index(OPI),which quantifies the difference between the summer mean sea surface temperatures of the NA and the CTP,is identified as a critical factor in modulating the strength of this teleconnection and influencing the zonal position of the EAWJ.
文摘Savanna, semi-deserts, and hot deserts characterize the Saharo-Arabian region, which includes Morocco, Mauretania, Algeria, Tunisia, Libya, Egypt, Palestine, Kuwait, Saudi Arabia, Qatar, Bahrain, the United Arab Emirates, Oman, Yemen, southern Jordan, Syria, Iraq, Iran, Afghanistan, Pakistan, and northern India. Its neighboring regions, the Sudano-Zambezian region belonging to the Paleotropical Kingdom and the Mediterranean and Irano-Turanian regions included in the Holarctic Kingdom, share a large portion of their flora with the Saharo-Arabian region. Despite the widespread acknowledgment of the region's global importance for plant diversity, an up to date list of the Saharo-Arabian endemics is still unavailable. The available data are frequently insufficient or out of date at both the whole global and the national scales. Therefore, the present study aims at screening and verifying the Saharo-Arabian endemic plants and determining the phytogeographical distribution of these taxa in the Egyptian flora. Hence, a preliminary list of 429 Saharo-Arabian endemic plants in Egypt was compiled from the available literature. Indeed, by excluding the species that were recorded in any countries or regions outside the Saharo-Arabian region based on different literature, database reviews, and websites, the present study has reduced this number to 126 taxa belonging to 87 genera and 37 families. Regarding the national geographic distribution, South Sinai is the richest region with 83 endemic species compared with other eight phytogeographic regions in Egypt, followed by the Isthmic Desert(the middle of Sinai Peninsula, 53 taxa). Sahara regional subzone(SS1) distributes all the 126 endemic species, Arabian regional subzone(SS2) owns 79 taxa, and Nubo-Sindian subzone(SS3) distributes only 14 endemics. Seven groups were recognized at the fourth level of classification as a result of the application of the two-way indicator species analysis(TWINSPAN) to the Saharo-Arabian endemic species in Egypt, i.e., Ⅰ Asphodelus refractus group, Ⅱ Agathophora alopecuroides var. papillosa group, Ⅲ Anvillea garcinii group, Ⅳ Reseda muricata group, V Agathophora alopecuroides var. alopecuroides group, Ⅵ Scrophularia deserti group, and Ⅶ Astragalus schimperi group. It's crucial to clearly define the Saharo-Arabian endemics and illustrate an updated verified database of these taxa for a given territory for providing future management plans that support the conservation and sustainable use of these valuable species under current thought-provoking devastating impacts of rapid anthropogenic and climate change in this region.
文摘The dependence of groundwater quality on borehole depth is usually debatable in groundwater studies, especially in complex geological formations where aquifer characteristics vary spatially with depth. This study therefore seeks to investigate the relationship between borehole depth and groundwater quality across the granitoid aquifers within the Birimian Supergroup in the Ashanti Region. Physicochemical analysis records of groundwater quality data were collected from 23 boreholes of public and private institutions in the Ashanti Region of Ghana, and the parametric values of iron, fluoride, total hardness, pH, nitrate, and nitrite were used to study the groundwater quality-depth relationship. The results showed that the depth-to-groundwater quality indicated a marginal increase in water quality in the range of 30 to 50 m, which is mathematically represented by the low-value correlation coefficient (r<sup>2</sup> = 0.026). A relatively significant increase occurs in the depth range of 50 to 80 m, which is given by a correlation coefficient of r<sup>2</sup> = 0.298. The mean percent parameter compatibility was 74%, 82%, 89%, and 97% at 50, 60, 70, and 80 m depths, respectively. The variations in groundwater quality per depth ratio ranged from 1.48, 1.37, 1.27, and 1.21 for 50, 60, 70, and 80 m depth, respectively. The recommended minimum borehole depth for excellent groundwater quality is suggested with a compatibility per meter depth ratio of 1.37. This results in a range between 50 and 70 m as the most desirable drilling depth for excellent groundwater quality within the granitoids of the Birimian Supergroup of the Ashanti Region in Ghana.
文摘Method: In Cameroon limited data are available regarding the prevalence of enteric bacteria associated with table egg consuming infections. As such, a situational-based study was performed in patients with complains of stomach disorders after egg consumption. Data related to sociodemographic characteristics and other factors were collected using a structured based questionnaire. Stool culture of utmost importance in stomach disorders patients and serum were collected for typhoid serological test. Results: A total of 207 participants took part in the survey, Results indicated nontyphoidal Salmonella infections were highest in the 3 areas of study with Mfoundi (73.44%) having the highest level of infection compared to other bacterial infection. other enteric bacteria associated to this infection were E. coli serotype 157, Aeromonas, Citrobacter freundii, Enterobacter cloaca and typhi salmonella. Meanwhile salmonelosis caused by typhic salmonella had highest prevalence in the Lekie Division (13.11%) as a result of poor hygienic practices associated with the conservation and preparation of eggs, Stool culture was observed to detect more positive cases in the diagnosis of typhoid fever than Widal test, but with no statistically significant (p > 0.05) difference between the stool culture and Widal test in the 3 areas of study. Conclusion: this study revealed that egg consumers are pruned to enteric bacterial and salmonella infections depending on how and where egg is consumed.
文摘The present study has been carried out on a total of 50 available plant species to assess their dust-capturing capacity and biochemical performances in and around open cast granite mine areas of Jhansi district and Bundelkhand University campus treated as control site. Plant species existing under a polluted environment for a long time may be considered as potentially resistant species and recommended for green belt design in mining areas, especially to cope with dust pollution. Results showed the pollution level, especially of mining-originated dust particles holding capacity of leaves and effects of different biochemical parameters (Total Chlorophyll, Protein and Carotenoid) of existing plant species both from mining areas as well as from Bundelkhand University campus. Based on their performances, Tectona grandis L., Ficus hispida L., Calotropis procera Aiton., Butea monosperma Lam. and Ficus benghalensis L., etc. are highly tolerant species while Ficus infectoria L., Artocarpus heterophyllus Lam., Ipomoea purpurea L., Allianthus excelsa Roxb. and Bauhinia variegata L. are intermediate tolerant species. T. grandis had shown the highest dust-holding capacity (2.566 ± 0.0004 mg/cm2) whereas Albizia procera (0.018 ± 0.0002 mg/cm2) was found to be the lowest dust-holding capacity. Our findings also showed that the T. grandis and F. hispida have significant dust deposition with minimal effect of dust on their leaf chlorophyll (17.447 ± 0.019 mg/g and 14.703 ± 0.201 mg/g), protein (0.699 ± 0.001 mg/g and 0.604 ± 0.002 mg/g) and carotenoid (0.372 ± 0.003 mg/g and 0.354 ± 0.003 mg/g) content respectively among all selected plant species. Therefore, in the present investigation, plant species with high tolerance to high dust-holding capacity on their leaf surfaces are preferable for green corridors as open cast granite mines and their adjacent areas.
基金supported by the State Grid Henan Economic Research Institute Science and Technology Project“Calculation and Demonstration of Distributed Photovoltaic Open Capacity Based on Multi-Source Heterogeneous Data”(5217L0230013).
文摘After the integration of large-scale DistributedGeneration(DG)into the distribution network,the randomness and volatility of its output result in a reduction of spatiotemporal alignment between power generation and demand in the distribution network,exacerbating the phenomenon of wind and solar power wastage.As a novel power system model,the fundamental concept of Regional Autonomous Power Grids(RAPGs)is to achieve localized management and energy autonomy,thereby facilitating the effective consumption of DGs.Therefore,this paper proposes a distributed resource planning strategy that enhances the autonomy capabilities of regional power grids by considering multiple evaluation indexes for autonomy.First,a regional Energy Storage(ES)configuration strategy is proposed.This strategy can select a suitable reference value for the upper limit of ES configuration based on the regional load andDGoutput to maximize the elimination of source load deviations in the region as the upper limit constraint of ES capacity.Then,a control strategy for regional ES is proposed,the charging and discharging reference line of ES is set,and multiple autonomy and economic indexes are used as objective functions to select different proportions of ES to control the distributed resources of the regional power grid and establish evaluation indexes of the internal regional generation and load power ratio,the proportion of power supply matching hours,new energy consumption rate and tie line power imbalance outside the region to evaluate changes in the regional autonomy capabilities.The final simulation results showthat in the real regional grid example,the planning method in the planning year in the region of the overall power supply matching hour ratio and new energy consumption rate increased by 3.9%and 4.8%on average,and the power imbalance of the tie line decreased by 7.8%on average.The proposed planning approach enables the maximization of regional autonomy while effectively smoothing the fluctuation of power exchange between the regional grid and the higher-level grid.This presents a rational and effective planning solution for the regional grid,facilitating the coordinated development between the region and the distribution network.
基金supported by the National Key Research and Development Program of China(Grant No.2018YFA0605703)the National Natural Science Foundation of China(Grant Nos.42176243,41976193 and 41676190)supported by National Natural Science Foundation of China(Grant No.41975079)。
文摘El Nino-Southern Oscillation(ENSO),the leading mode of global interannual variability,usually intensifies the Hadley Circulation(HC),and meanwhile constrains its meridional extension,leading to an equatorward movement of the jet system.Previous studies have investigated the response of HC to ENSO events using different reanalysis datasets and evaluated their capability in capturing the main features of ENSO-associated HC anomalies.However,these studies mainly focused on the global HC,represented by a zonal-mean mass stream function(MSF).Comparatively fewer studies have evaluated HC responses from a regional perspective,partly due to the prerequisite of the Stokes MSF,which prevents us from integrating a regional HC.In this study,we adopt a recently developed technique to construct the three-dimensional structure of HC and evaluate the capability of eight state-of-the-art reanalyses in reproducing the regional HC response to ENSO events.Results show that all eight reanalyses reproduce the spatial structure of HC responses well,with an intensified HC around the central-eastern Pacific but weakened circulations around the Indo-Pacific warm pool and tropical Atlantic.The spatial correlation coefficient of the three-dimensional HC anomalies among the different datasets is always larger than 0.93.However,these datasets may not capture the amplitudes of the HC responses well.This uncertainty is especially large for ENSO-associated equatorially asymmetric HC anomalies,with the maximum amplitude in Climate Forecast System Reanalysis(CFSR)being about 2.7 times the minimum value in the Twentieth Century Reanalysis(20CR).One should be careful when using reanalysis data to evaluate the intensity of ENSO-associated HC anomalies.