Sarcopenia,or muscle loss,has been one of the hot topics in the medical field in recent years.Due to limited attention and effective treatments for sarcopenia in the past,many patients,especially the elderly,suffered ...Sarcopenia,or muscle loss,has been one of the hot topics in the medical field in recent years.Due to limited attention and effective treatments for sarcopenia in the past,many patients,especially the elderly,suffered irreversible damage to their motor function caused by sarcopenia.However,recent scientific studies have found that the occurrence and development of sarcopenia are closely related to the function and quantity of muscle satellite cells.This article briefly discusses the relationship between muscle satellite cells and sarcopenia.展开更多
Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways...Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways that underlie skeletal muscle function.The process of muscle contra ction,orchestrated by a complex interplay of molecular events,is at the core of skeletal muscle function.Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction.Within muscle fibers,calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force.Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling.The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis.Myogenic regulators coordinate the diffe rentiation of myoblasts into mature muscle fibers.Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability.Seve ral muscle-related diseases,including congenital myasthenic disorders,sarcopenia,muscular dystrophies,and metabolic myopathies,are underpinned by dys regulated molecular pathways in skeletal muscle.Therapeutic interventions aimed at preserving muscle mass and function,enhancing regeneration,and improving metabolic health hold promise by targeting specific molecular pathways.Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway,a critical regulator of myogenesis,muscle regeneration,and metabolic function,and the Hippo signaling pathway.In recent years,more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers,and at the neuromuscular junction.In fact,research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers.In this review,we will summarize and discuss the data on these two pathways,focusing on their concerted action next to their contribution to skeletal muscle biology.However,an in-depth discussion of the noncanonical Wnt pathway,the fibro/a dipogenic precursors,or the mechanosensory aspects of these pathways is not the focus of this review.展开更多
As the only source of stem cells, satellite cells play and extraordinary role in the remediation process of skeletal muscle after injury. This paper overviewed the biological characteristic of skeletal muscle satellit...As the only source of stem cells, satellite cells play and extraordinary role in the remediation process of skeletal muscle after injury. This paper overviewed the biological characteristic of skeletal muscle satellite cells and its role in repairing muscle injury, and put forward the prospects of its application in muscle trauma repair.展开更多
A synthetic isoflavone (ISO-S) or genistein was added in culture medium at different concentrations (0, 10, 20, 30, 40, and 80 p.mol L^-1) to investigate the effects of soybean isoflavones on antioxidative capacit...A synthetic isoflavone (ISO-S) or genistein was added in culture medium at different concentrations (0, 10, 20, 30, 40, and 80 p.mol L^-1) to investigate the effects of soybean isoflavones on antioxidative capacity of porcine skeletal muscle satellite cells. After 48 h incubation, the suspension was cryopreserved for the determination of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) activities, and malondialdehyde (MDA) content. The mRNA levels of SOD, CAT, and GSH-Px gene in cells were detected with Taqman fluorescent probe method. The results showed that the content of MDA and the activities and the mRNA levels of SOD of porcine skeletal muscle satellite cells were influenced by supplemented soybean isoflavone (P〈0.05) when adding 10-80 μmol L^-1 ISO-S or genistein in the medium. The MDA contents, SOD and CAT activities and their mRNA expression levels of porcine skeletal muscle cells responded quadratically (P〈 0.05) as the level of ISO-S or genistein increased. Pre-incubation of porcine skeletal muscle satellite cells with ISO-S or genistein at 10-40 pmol L-1 elevated the activities and the mRNA expression levels of SOD and CAT in cells concurrently and decreased the cellular content of MDA (P〈 0.05). The results indicated that pre-incubation of ISO-S or genistein at 10- 40μmol L^-1 could improve the antioxidative capacity of porcine skeletal muscle satellite cells.展开更多
Pig is an important economic animal in China. Improving meat quality and meat productivity is a long time issue in animal genetic breeding. Micro RNAs(mi RNAs) are short non-coding RNAs that participate in various bio...Pig is an important economic animal in China. Improving meat quality and meat productivity is a long time issue in animal genetic breeding. Micro RNAs(mi RNAs) are short non-coding RNAs that participate in various biological processes, such as muscle development and embryogenesis. mi R-22 differentially expresses in embryonic and adult skeletal muscle. However, the underlying mechanism is unclear. In this study, we investigated mi R-22 function in proliferation and differentiation of porcine satellite cells(PSCs) in skeletal muscle. Our data show that mi R-22 expressed in both proliferation and differentiated PSCs and is significantly upregulated(P<0.05) during differentiation. After treated with the mi R-22 inhibitor, PSCs proliferation was significantly increased(P<0.05), as indicated by the up-regulation(P<0.01) of cyclin D1(CCND1), cyclin B1(CCNB1) and down-regulation(P<0.05) of P21. Conversely, over-expression of mi R-22 resulted in opposite results. Differentiation of PSCs was significantly suppressed(P<0.05), evidenced by two major myogenic markers: myogenin(Myo G) and myosin heavy chain(My HC), after transfecting the PSCs with mi R-22 inhibitor. Opposite results were demonstrated in the other way around by transfection with mi R-22 mimics. In conclusion, the data from this study indicated that mi R-22 inhibited the PSCs proliferation but promoted their differentiation.展开更多
To examine the effect of myogenin gene on the differentiation of bovine skeletal muscle satellite cell, we constructed small interfering RNA plasmid vector to obtain myogenin knockdown bovine skeletal muscle cells, th...To examine the effect of myogenin gene on the differentiation of bovine skeletal muscle satellite cell, we constructed small interfering RNA plasmid vector to obtain myogenin knockdown bovine skeletal muscle cells, then used cell transfection, real time RCR and Western Blot to detect the influence of myogenin to cell differentiation. Results showed that the knockdown of myogenin significantly decreased its expression and other muscle-specific genes. Compared to the control, it could differentiate into few myotubes when challenged by low serum in the medium. These findings provided an important theoretical basis for further explore of the genetic mechanism in adult skeletal muscle, the remedy of muscle injuries and the cultivation of high-yield transgenic cattle.展开更多
This study investigated the protective effect of ATP on skeletal muscle satellite cells damaged by H2O2 in neonatal rats and the possible mechanism. The skeletal muscle satellite cells were randomly divided into four ...This study investigated the protective effect of ATP on skeletal muscle satellite cells damaged by H2O2 in neonatal rats and the possible mechanism. The skeletal muscle satellite cells were randomly divided into four groups: normal group, model group(cells treated with 0.1 mmol/L H2O2 for 50 s), protection group(cells treated with 16, 8, 4, 2, 1, 0.5, or 0.25 mmol/L ATP for 24 h, and then with 0.1 mmol/L H2O2 for 50 s), proliferation group(cells treated with 16, 8, 4, 2, 1, 0.5, or 0.25 mmol/L ATP for 24 h). MTT assay, FITC+PI+DAPI fluorescent staining, Giemsa staining and immunofluorescence were performed to examine cell viability and apoptosis, and apoptosis-related proteins. The results showed that the survival rate of skeletal muscle satellite cells was decreased and the apoptosis rate was increased after H2O2 treatment(P〈0.01). Different doses of ATP had different effects on skeletal muscle satellite cells damaged by H2O2: the survival rate of muscle satellite cells treated with ATP at 4, 2, or 1 mmol/L was increased. The protective effect was most profound on cells treated with 2 mmol/L ATP. Immunofluorescence showed that ATP could increase the number of Bcl-2-positive cells(P〈0.01) and decrease the number of the Bax-positive cells(P〈0.01). It was concluded that ATP could protect skeletal muscle satellite cells against H2O2 damage in neonatal rats, which may be attributed to the up-regulation of the expression of Bcl-2 and down-regulation of Bax, resulting in the suppression of apoptosis.展开更多
This review highlights some established and some more contemporary mechanisms responsible for heart failure(HF)-induced skeletal muscle wasting and weakness.We first describe the effects of HF on the relationship betw...This review highlights some established and some more contemporary mechanisms responsible for heart failure(HF)-induced skeletal muscle wasting and weakness.We first describe the effects of HF on the relationship between protein synthesis and degradation rates,which determine muscle mass,the involvement of the satellite cells for continual muscle regeneration,and changes in myofiber calcium homeostasis linked to contractile dysfunction.We then highlight key mechanistic effects of both aerobic and resistance exercise training on skeletal muscle in HF and outline its application as a beneficial treatment.Overall,HF causes multiple impairments related to autophagy,anabolic-catabolic signaling,satellite cell proliferation,and calcium homeostasis,which together promote fiber atrophy,contractile dysfunction,and impaired regeneration.Although both wasting and weakness are partly rescued by aerobic and resistance exercise training in HF,the effects of satellite cell dynamics remain poorly explored.展开更多
Purpose: The objective of the present study was to determine whether a denervated muscle extract(DmEx) could stimulate satellite cell response in denervated muscle.Methods: Wistar rats were divided into 4 groups: norm...Purpose: The objective of the present study was to determine whether a denervated muscle extract(DmEx) could stimulate satellite cell response in denervated muscle.Methods: Wistar rats were divided into 4 groups: normal rats, normal rats treated with DmEx, denervated rats, and denervated rats treated with DmEx. The soleus muscles were examined using immunohistochemical techniques for proliferating cell nuclear antigen, desmin, and myogenic differentiation antigen(MyoD), and electron microscopy was used for analysis of the satellite cells.Results: The results indicate that while denervation causes activation of satellite cells, DmEx also induces myogenic differentiation of cells localized in the interstitial space and the formation of new muscle fibers. Although DmEx had a similar effect in nature on innervated and denervated muscles, this response was of greater magnitude in denervated vs. intact muscles.Conclusion: Our study shows that treatment of denervated rats with DmEx potentiates the myogenic response in atrophic denervated muscles.展开更多
Objective To study the cell growth factor secretion and vascular regeneration in acute in-farcted myocardium after autologous skeletal muscle satellite cell implantation. Methods Autologous skeletal muscle satellite c...Objective To study the cell growth factor secretion and vascular regeneration in acute in-farcted myocardium after autologous skeletal muscle satellite cell implantation. Methods Autologous skeletal muscle satellite cells from adult mongrel canine were implanted into the acute myocardial infarct site via the ligated left anterior descending (LAD) artery. Specimens were harvested at 2, 4 , 8 weeks after implantation for the expression of insulin-like growth factor-1 (IGF-1), basic fibroblast growth factor ( bFGF) and the vascular density. Results The expression of IGF-1, bFGF and the vascular density in skeletal muscle satellite cell implant group were higher than that in the control group. Conclusion The skeletal muscle satellite cells, after being implanted into the acute myocardial infarction, not only showed myocardial regeneration, but also showed the ability to secrete the cell factors, hence representing a positive effect on the regeneration of the infarcted myocardium.展开更多
Objective To study the improvement of infarcted myocardial contractile force after autologous skeletal muscle satellite cell implantation via intracoronary arterial perfusion. Methods Skeletal muscle cells were harves...Objective To study the improvement of infarcted myocardial contractile force after autologous skeletal muscle satellite cell implantation via intracoronary arterial perfusion. Methods Skeletal muscle cells were harvested from gluteus max of adult mongrel dogs and the cells were cultured and expanded before being labeled with DAPI (4’, 6-diamidino-2-phenylindone). The labeled cells were then implanted into the acute myocardial infarct site via the ligated left anterior descending (LAD) coronary artery. Specimens were taken at 2nd, 4th, 8th week after myoblast implantation for histologic and contractile force evaluation, respectively. Results The satellite cells with fluorescence had been observed in the infarct site and also in papi- llary muscle with consistent oriented direction of host myocardium. A portion of the implanted cells had differen- tiated into muscle fibers. Two weeks after implantation, the myocardial contractile force showed no significant difference between the cell implant group and control group. At 4 and 8 week, the contractile force in the cell implant group was better than that in control group. Conclusion The skeletal muscle satellite cells, implanted into infarct myocardium by intracoronary arterial perfusion, could disseminate through the entire infarcted zone with myocardial regeneration and improve the contractile function of the infarcted myocardium.展开更多
Background:Though the mechanisms of skeletal muscle regeneration are deeply understood,those involved in muscle contusion,one of the most common muscle injuries in sports medicine clinics,are not.The objective of this...Background:Though the mechanisms of skeletal muscle regeneration are deeply understood,those involved in muscle contusion,one of the most common muscle injuries in sports medicine clinics,are not.The objective of this study is to explore the mechanisms involved in muscle regeneration after contusion injury.Methods:In this study,a total of 72 mice were used.Eight of them were randomly chosen for the control group,while the rest were subjected to muscle contusion.Subsequently,their gastrocnemius muscles were harvested at different time points.The changes in muscle morphology were assessed by hematoxylin and eosin(HE) stain.In addition,the gene expression was analyzed by real-time polymerase chain reaction.Results:The data showed that the expression of many genes,i.e.,specific markers of immune cells and satellite cells,regulatory factors for muscle regeneration,cytokines,and chemokines,increased in the early stages of recovery,especially in the first 3 days.Furthermore,there were strict rules in the expression of these genes.However,almost all the genes returned to normal at 14 days post-injury.Conclusion:The sequence of immune cells invaded after muscle contusion was neutrophils,M1 macrophages and M2 macrophages.Some CC(CCL2,CCL3,and CCL4) and CXC(CXCL10) chemokines may be involved in the chemotaxis of these immune cells.HGF may be the primary factor to activate the satellite cells after muscle contusion.Moreover,2 weeks are needed to recover when acute contusion happens as used in this study.展开更多
AIM: To study regeneration of damaged human and murine muscle implants and the contribution of added xenogeneic mesenchymal stem cells(MSCs).METHODS: Minced human or mouse skeletal muscle tissues were implanted togeth...AIM: To study regeneration of damaged human and murine muscle implants and the contribution of added xenogeneic mesenchymal stem cells(MSCs).METHODS: Minced human or mouse skeletal muscle tissues were implanted together with human or mouse MSCs subcutaneously on the back of non-obese diabetic/severe combined immunodeficient mice. The muscle tissues(both human and murine) were minced with scalpels into small pieces(< 1 mm3) and aliquoted in portions of 200 mm3. These portions were either cryopreserved in 10% dimethylsulfoxide or freshly implanted. Syngeneic or xenogeneic MSCs were added to the minced muscles directly before implantation. Implants were collected at 7, 14, 30 or 45 d after transplantation and processed for(immuno)histological analysis. The progression of muscle regeneration was assessed using a standard histological staining(hematoxylin-phloxinsaffron). Antibodies recognizing Pax7 and von Willebrand factor were used to detect the presence of satellite cells and blood vessels, respectively. To enable detection of the bone marrow-derived MSCs or their derivatives we used MSCs previously transduced with lentiviral vectors expressing a cytoplasmic LacZ gene. X-gal staining of the fixed tissues was used to detect β-galactosidase-positive cells and myofibers.RESULTS: Myoregeneration in implants of fresh murine muscle was evident as early as day 7, and progressed with time to occupy 50% to 70% of the implants. Regeneration of fresh human muscle was slower. These observations of fresh muscle implants were in contrast to the regeneration of cryopreserved murine muscle that proceeded similarly to that of fresh tissue except for day 45(P < 0.05). Cryopreserved human muscle showed minimal regeneration, suggesting that the freezing procedure was detrimental to human satellite cells. In fresh and cryopreserved mouse muscle supplemented with LacZ-tagged mouse MSCs, β-galactosidase-positive myofibers were identified early after grafting at the wellvascularized periphery of the implants. The contribution of human MSCs to murine myofiber formation was, however, restricted to the cryopreserved mouse muscle implants. This suggests that fresh murine muscle tissue provides a suboptimal environment for maintenance of human MSCs. A detailed analysis of the histological sections of the various muscle implants revealed the presence of cellular structures with a deviating morphology. Additional stainings with alizarin red and alcian blue showed myofiber calcification in 50 of 66 human muscle implants, and encapsulated cartilage in 10 of 81 of murine muscle implants, respectively.CONCLUSION: In mouse models the engagement of human MSCs in myoregeneration might be underestimated. Furthermore, our model permits the dissection of speciesspecific factors in the microenvironment.展开更多
【目的】骨骼肌是动物机体的重要组成成分,其生长发育直接影响畜禽肉产量,叉头转录因子O1(forkhead box protein O1,FoxO1)作为重要的转录调控因子,其与骨骼肌生长发育密切相关。探究过表达FoxO1对牛骨骼肌细胞增殖、凋亡与分化的作用,...【目的】骨骼肌是动物机体的重要组成成分,其生长发育直接影响畜禽肉产量,叉头转录因子O1(forkhead box protein O1,FoxO1)作为重要的转录调控因子,其与骨骼肌生长发育密切相关。探究过表达FoxO1对牛骨骼肌细胞增殖、凋亡与分化的作用,为肉牛遗传改良提供基础材料。【方法】采集牛的多个组织样品,提取其RNA并反转录,利用实时荧光定量PCR(qPCR)构建FoxO1组织表达谱。利用酶消化法分离得到牛骨骼肌细胞,通过观察其分化后肌管的形成以及qPCR检测其分化标志基因的表达情况来检验所分离细胞的分化性能。利用免疫荧光技术对牛骨骼肌细胞进行FoxO1亚细胞定位。设计并包装牛FoxO1过表达腺病毒,以提高牛骨骼肌细胞内FoxO1的表达。利用EdU染色检测过表达FoxO1对细胞相对增殖率的影响。利用流式细胞术检测过表达FoxO1对细胞周期分布的影响。利用qPCR检测过表达FoxO1对牛骨骼肌细胞增殖、凋亡和分化相关基因表达水平的影响。【结果】组织表达谱结果显示FoxO1在多个组织中均有表达,其在成年牛的背脂中表达量最高,在背最长肌组织中表达量最低,且FoxO1在犊牛背最长肌组织中的表达量要极显著高于成年牛的(P<0.01)。亚细胞定位结果显示FoxO1在牛骨骼肌细胞的细胞核和细胞质内均有表达,其细胞核内荧光强度高于细胞质。成功构建FoxO1过表达载体,并完成FoxO1重组过表达腺病毒的包装与扩繁,在感染牛骨骼肌细胞后,能显著提高FoxO1表达水平(P<0.01)。EdU检测显示过表达FoxO1会显著降低细胞增殖率(P<0.01),流式细胞周期检测显示过表达FoxO1会显著增加G1期细胞数并减少S期和G2期细胞数,抑制细胞G1/S期的转化,并减少G2期细胞的形成。利用qPCR进一步检测发现,增殖相关基因PCNA、CDK1、CDK2、CCNA2、CCNB1、CCND1和CCNE2均极显著下调(P<0.01),促凋亡相关基因BAD和BAX显著上调以及抑凋亡基因BCL2显著下调(P<0.05)。过表达FoxO1导致牛骨骼肌细胞肌管形成量减少,qPCR检测结果发现,骨骼肌分化相关基因MYOD、MYOG、MYF5、MYF6和MYHC的表达量显著下调(P<0.05)。【结论】FoxO1在牛的不同组织中均有表达,是一个广泛存在的转录调控因子,并且在背最长肌组织生长发育不同阶段存在表达差异,起到阶段调控作用。FoxO1在细胞核和细胞质中均发挥重要的转录调控作用,特别是在细胞核内。过表达FoxO1可能通过抑制细胞增殖相关基因和肌细胞分化相关基因的表达,从而抑制牛骨骼肌细胞的增殖与分化,并且可能通过上调促凋亡基因的表达和下调抑凋亡基因的表达来促使牛骨骼肌细胞凋亡的发生。展开更多
文摘Sarcopenia,or muscle loss,has been one of the hot topics in the medical field in recent years.Due to limited attention and effective treatments for sarcopenia in the past,many patients,especially the elderly,suffered irreversible damage to their motor function caused by sarcopenia.However,recent scientific studies have found that the occurrence and development of sarcopenia are closely related to the function and quantity of muscle satellite cells.This article briefly discusses the relationship between muscle satellite cells and sarcopenia.
基金supported by the German Research Council(Deutsche Forschungsgemeinschaft,HA3309/3-1/2,HA3309/6-1,HA3309/7-1)。
文摘Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways that underlie skeletal muscle function.The process of muscle contra ction,orchestrated by a complex interplay of molecular events,is at the core of skeletal muscle function.Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction.Within muscle fibers,calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force.Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling.The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis.Myogenic regulators coordinate the diffe rentiation of myoblasts into mature muscle fibers.Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability.Seve ral muscle-related diseases,including congenital myasthenic disorders,sarcopenia,muscular dystrophies,and metabolic myopathies,are underpinned by dys regulated molecular pathways in skeletal muscle.Therapeutic interventions aimed at preserving muscle mass and function,enhancing regeneration,and improving metabolic health hold promise by targeting specific molecular pathways.Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway,a critical regulator of myogenesis,muscle regeneration,and metabolic function,and the Hippo signaling pathway.In recent years,more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers,and at the neuromuscular junction.In fact,research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers.In this review,we will summarize and discuss the data on these two pathways,focusing on their concerted action next to their contribution to skeletal muscle biology.However,an in-depth discussion of the noncanonical Wnt pathway,the fibro/a dipogenic precursors,or the mechanosensory aspects of these pathways is not the focus of this review.
文摘As the only source of stem cells, satellite cells play and extraordinary role in the remediation process of skeletal muscle after injury. This paper overviewed the biological characteristic of skeletal muscle satellite cells and its role in repairing muscle injury, and put forward the prospects of its application in muscle trauma repair.
基金supports of the grants from the Ministry of Science and Technology of China and the Department of Science and Tech-nology of Guangdong Province, Chinasupported by the National Basic Research Program of China (973 Program, 2004CB117500)the Earmarked Fund for Modern Agro-Industry Technology Research System, China
文摘A synthetic isoflavone (ISO-S) or genistein was added in culture medium at different concentrations (0, 10, 20, 30, 40, and 80 p.mol L^-1) to investigate the effects of soybean isoflavones on antioxidative capacity of porcine skeletal muscle satellite cells. After 48 h incubation, the suspension was cryopreserved for the determination of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) activities, and malondialdehyde (MDA) content. The mRNA levels of SOD, CAT, and GSH-Px gene in cells were detected with Taqman fluorescent probe method. The results showed that the content of MDA and the activities and the mRNA levels of SOD of porcine skeletal muscle satellite cells were influenced by supplemented soybean isoflavone (P〈0.05) when adding 10-80 μmol L^-1 ISO-S or genistein in the medium. The MDA contents, SOD and CAT activities and their mRNA expression levels of porcine skeletal muscle cells responded quadratically (P〈 0.05) as the level of ISO-S or genistein increased. Pre-incubation of porcine skeletal muscle satellite cells with ISO-S or genistein at 10-40 pmol L-1 elevated the activities and the mRNA expression levels of SOD and CAT in cells concurrently and decreased the cellular content of MDA (P〈 0.05). The results indicated that pre-incubation of ISO-S or genistein at 10- 40μmol L^-1 could improve the antioxidative capacity of porcine skeletal muscle satellite cells.
基金supported by the Key Foundation for Basic and Application Research in Higher Education of guangdong, China (2017KZDXM009)the China Postdoctoral Science Foundation (2018M640789)the Provincial Agricultural Science Innovation and Promotion Project, China. (2018LM2150)
文摘Pig is an important economic animal in China. Improving meat quality and meat productivity is a long time issue in animal genetic breeding. Micro RNAs(mi RNAs) are short non-coding RNAs that participate in various biological processes, such as muscle development and embryogenesis. mi R-22 differentially expresses in embryonic and adult skeletal muscle. However, the underlying mechanism is unclear. In this study, we investigated mi R-22 function in proliferation and differentiation of porcine satellite cells(PSCs) in skeletal muscle. Our data show that mi R-22 expressed in both proliferation and differentiated PSCs and is significantly upregulated(P<0.05) during differentiation. After treated with the mi R-22 inhibitor, PSCs proliferation was significantly increased(P<0.05), as indicated by the up-regulation(P<0.01) of cyclin D1(CCND1), cyclin B1(CCNB1) and down-regulation(P<0.05) of P21. Conversely, over-expression of mi R-22 resulted in opposite results. Differentiation of PSCs was significantly suppressed(P<0.05), evidenced by two major myogenic markers: myogenin(Myo G) and myosin heavy chain(My HC), after transfecting the PSCs with mi R-22 inhibitor. Opposite results were demonstrated in the other way around by transfection with mi R-22 mimics. In conclusion, the data from this study indicated that mi R-22 inhibited the PSCs proliferation but promoted their differentiation.
基金Supported by the Ministry of Agricultural Nuarture of New Varieties Genetically Modified Organisms Significant Special Funding (2008ZX08007-002)
文摘To examine the effect of myogenin gene on the differentiation of bovine skeletal muscle satellite cell, we constructed small interfering RNA plasmid vector to obtain myogenin knockdown bovine skeletal muscle cells, then used cell transfection, real time RCR and Western Blot to detect the influence of myogenin to cell differentiation. Results showed that the knockdown of myogenin significantly decreased its expression and other muscle-specific genes. Compared to the control, it could differentiate into few myotubes when challenged by low serum in the medium. These findings provided an important theoretical basis for further explore of the genetic mechanism in adult skeletal muscle, the remedy of muscle injuries and the cultivation of high-yield transgenic cattle.
基金supported by grants from the Special Doctor Program of Nantong University(No.05024276)the Outstanding Teacher Program of Nantong University(No.03080542)
文摘This study investigated the protective effect of ATP on skeletal muscle satellite cells damaged by H2O2 in neonatal rats and the possible mechanism. The skeletal muscle satellite cells were randomly divided into four groups: normal group, model group(cells treated with 0.1 mmol/L H2O2 for 50 s), protection group(cells treated with 16, 8, 4, 2, 1, 0.5, or 0.25 mmol/L ATP for 24 h, and then with 0.1 mmol/L H2O2 for 50 s), proliferation group(cells treated with 16, 8, 4, 2, 1, 0.5, or 0.25 mmol/L ATP for 24 h). MTT assay, FITC+PI+DAPI fluorescent staining, Giemsa staining and immunofluorescence were performed to examine cell viability and apoptosis, and apoptosis-related proteins. The results showed that the survival rate of skeletal muscle satellite cells was decreased and the apoptosis rate was increased after H2O2 treatment(P〈0.01). Different doses of ATP had different effects on skeletal muscle satellite cells damaged by H2O2: the survival rate of muscle satellite cells treated with ATP at 4, 2, or 1 mmol/L was increased. The protective effect was most profound on cells treated with 2 mmol/L ATP. Immunofluorescence showed that ATP could increase the number of Bcl-2-positive cells(P〈0.01) and decrease the number of the Bax-positive cells(P〈0.01). It was concluded that ATP could protect skeletal muscle satellite cells against H2O2 damage in neonatal rats, which may be attributed to the up-regulation of the expression of Bcl-2 and down-regulation of Bax, resulting in the suppression of apoptosis.
基金supported by Heart Research UK(Grant number 119191)British Heart Foundation(Grant number 124055)。
文摘This review highlights some established and some more contemporary mechanisms responsible for heart failure(HF)-induced skeletal muscle wasting and weakness.We first describe the effects of HF on the relationship between protein synthesis and degradation rates,which determine muscle mass,the involvement of the satellite cells for continual muscle regeneration,and changes in myofiber calcium homeostasis linked to contractile dysfunction.We then highlight key mechanistic effects of both aerobic and resistance exercise training on skeletal muscle in HF and outline its application as a beneficial treatment.Overall,HF causes multiple impairments related to autophagy,anabolic-catabolic signaling,satellite cell proliferation,and calcium homeostasis,which together promote fiber atrophy,contractile dysfunction,and impaired regeneration.Although both wasting and weakness are partly rescued by aerobic and resistance exercise training in HF,the effects of satellite cell dynamics remain poorly explored.
文摘Purpose: The objective of the present study was to determine whether a denervated muscle extract(DmEx) could stimulate satellite cell response in denervated muscle.Methods: Wistar rats were divided into 4 groups: normal rats, normal rats treated with DmEx, denervated rats, and denervated rats treated with DmEx. The soleus muscles were examined using immunohistochemical techniques for proliferating cell nuclear antigen, desmin, and myogenic differentiation antigen(MyoD), and electron microscopy was used for analysis of the satellite cells.Results: The results indicate that while denervation causes activation of satellite cells, DmEx also induces myogenic differentiation of cells localized in the interstitial space and the formation of new muscle fibers. Although DmEx had a similar effect in nature on innervated and denervated muscles, this response was of greater magnitude in denervated vs. intact muscles.Conclusion: Our study shows that treatment of denervated rats with DmEx potentiates the myogenic response in atrophic denervated muscles.
基金Supported by grants from the Nature Science Foundation of China(39770735)
文摘Objective To study the cell growth factor secretion and vascular regeneration in acute in-farcted myocardium after autologous skeletal muscle satellite cell implantation. Methods Autologous skeletal muscle satellite cells from adult mongrel canine were implanted into the acute myocardial infarct site via the ligated left anterior descending (LAD) artery. Specimens were harvested at 2, 4 , 8 weeks after implantation for the expression of insulin-like growth factor-1 (IGF-1), basic fibroblast growth factor ( bFGF) and the vascular density. Results The expression of IGF-1, bFGF and the vascular density in skeletal muscle satellite cell implant group were higher than that in the control group. Conclusion The skeletal muscle satellite cells, after being implanted into the acute myocardial infarction, not only showed myocardial regeneration, but also showed the ability to secrete the cell factors, hence representing a positive effect on the regeneration of the infarcted myocardium.
文摘Objective To study the improvement of infarcted myocardial contractile force after autologous skeletal muscle satellite cell implantation via intracoronary arterial perfusion. Methods Skeletal muscle cells were harvested from gluteus max of adult mongrel dogs and the cells were cultured and expanded before being labeled with DAPI (4’, 6-diamidino-2-phenylindone). The labeled cells were then implanted into the acute myocardial infarct site via the ligated left anterior descending (LAD) coronary artery. Specimens were taken at 2nd, 4th, 8th week after myoblast implantation for histologic and contractile force evaluation, respectively. Results The satellite cells with fluorescence had been observed in the infarct site and also in papi- llary muscle with consistent oriented direction of host myocardium. A portion of the implanted cells had differen- tiated into muscle fibers. Two weeks after implantation, the myocardial contractile force showed no significant difference between the cell implant group and control group. At 4 and 8 week, the contractile force in the cell implant group was better than that in control group. Conclusion The skeletal muscle satellite cells, implanted into infarct myocardium by intracoronary arterial perfusion, could disseminate through the entire infarcted zone with myocardial regeneration and improve the contractile function of the infarcted myocardium.
基金supported by the grants from National Natural Science Foundation of China (No.31271273,No.31300975)the Doctoral Fund of Ministry of Education of China (No.20133156120004)the Key Lab of Exercise and Health Sciences of Ministry of Education (Shanghai University of Sport)
文摘Background:Though the mechanisms of skeletal muscle regeneration are deeply understood,those involved in muscle contusion,one of the most common muscle injuries in sports medicine clinics,are not.The objective of this study is to explore the mechanisms involved in muscle regeneration after contusion injury.Methods:In this study,a total of 72 mice were used.Eight of them were randomly chosen for the control group,while the rest were subjected to muscle contusion.Subsequently,their gastrocnemius muscles were harvested at different time points.The changes in muscle morphology were assessed by hematoxylin and eosin(HE) stain.In addition,the gene expression was analyzed by real-time polymerase chain reaction.Results:The data showed that the expression of many genes,i.e.,specific markers of immune cells and satellite cells,regulatory factors for muscle regeneration,cytokines,and chemokines,increased in the early stages of recovery,especially in the first 3 days.Furthermore,there were strict rules in the expression of these genes.However,almost all the genes returned to normal at 14 days post-injury.Conclusion:The sequence of immune cells invaded after muscle contusion was neutrophils,M1 macrophages and M2 macrophages.Some CC(CCL2,CCL3,and CCL4) and CXC(CXCL10) chemokines may be involved in the chemotaxis of these immune cells.HGF may be the primary factor to activate the satellite cells after muscle contusion.Moreover,2 weeks are needed to recover when acute contusion happens as used in this study.
基金Supported by A scholarship to AS de la Garza-Rodea from the Universidad Autonoma de Nuevo Leon,Monterrey,Mexico
文摘AIM: To study regeneration of damaged human and murine muscle implants and the contribution of added xenogeneic mesenchymal stem cells(MSCs).METHODS: Minced human or mouse skeletal muscle tissues were implanted together with human or mouse MSCs subcutaneously on the back of non-obese diabetic/severe combined immunodeficient mice. The muscle tissues(both human and murine) were minced with scalpels into small pieces(< 1 mm3) and aliquoted in portions of 200 mm3. These portions were either cryopreserved in 10% dimethylsulfoxide or freshly implanted. Syngeneic or xenogeneic MSCs were added to the minced muscles directly before implantation. Implants were collected at 7, 14, 30 or 45 d after transplantation and processed for(immuno)histological analysis. The progression of muscle regeneration was assessed using a standard histological staining(hematoxylin-phloxinsaffron). Antibodies recognizing Pax7 and von Willebrand factor were used to detect the presence of satellite cells and blood vessels, respectively. To enable detection of the bone marrow-derived MSCs or their derivatives we used MSCs previously transduced with lentiviral vectors expressing a cytoplasmic LacZ gene. X-gal staining of the fixed tissues was used to detect β-galactosidase-positive cells and myofibers.RESULTS: Myoregeneration in implants of fresh murine muscle was evident as early as day 7, and progressed with time to occupy 50% to 70% of the implants. Regeneration of fresh human muscle was slower. These observations of fresh muscle implants were in contrast to the regeneration of cryopreserved murine muscle that proceeded similarly to that of fresh tissue except for day 45(P < 0.05). Cryopreserved human muscle showed minimal regeneration, suggesting that the freezing procedure was detrimental to human satellite cells. In fresh and cryopreserved mouse muscle supplemented with LacZ-tagged mouse MSCs, β-galactosidase-positive myofibers were identified early after grafting at the wellvascularized periphery of the implants. The contribution of human MSCs to murine myofiber formation was, however, restricted to the cryopreserved mouse muscle implants. This suggests that fresh murine muscle tissue provides a suboptimal environment for maintenance of human MSCs. A detailed analysis of the histological sections of the various muscle implants revealed the presence of cellular structures with a deviating morphology. Additional stainings with alizarin red and alcian blue showed myofiber calcification in 50 of 66 human muscle implants, and encapsulated cartilage in 10 of 81 of murine muscle implants, respectively.CONCLUSION: In mouse models the engagement of human MSCs in myoregeneration might be underestimated. Furthermore, our model permits the dissection of speciesspecific factors in the microenvironment.
文摘【目的】骨骼肌是动物机体的重要组成成分,其生长发育直接影响畜禽肉产量,叉头转录因子O1(forkhead box protein O1,FoxO1)作为重要的转录调控因子,其与骨骼肌生长发育密切相关。探究过表达FoxO1对牛骨骼肌细胞增殖、凋亡与分化的作用,为肉牛遗传改良提供基础材料。【方法】采集牛的多个组织样品,提取其RNA并反转录,利用实时荧光定量PCR(qPCR)构建FoxO1组织表达谱。利用酶消化法分离得到牛骨骼肌细胞,通过观察其分化后肌管的形成以及qPCR检测其分化标志基因的表达情况来检验所分离细胞的分化性能。利用免疫荧光技术对牛骨骼肌细胞进行FoxO1亚细胞定位。设计并包装牛FoxO1过表达腺病毒,以提高牛骨骼肌细胞内FoxO1的表达。利用EdU染色检测过表达FoxO1对细胞相对增殖率的影响。利用流式细胞术检测过表达FoxO1对细胞周期分布的影响。利用qPCR检测过表达FoxO1对牛骨骼肌细胞增殖、凋亡和分化相关基因表达水平的影响。【结果】组织表达谱结果显示FoxO1在多个组织中均有表达,其在成年牛的背脂中表达量最高,在背最长肌组织中表达量最低,且FoxO1在犊牛背最长肌组织中的表达量要极显著高于成年牛的(P<0.01)。亚细胞定位结果显示FoxO1在牛骨骼肌细胞的细胞核和细胞质内均有表达,其细胞核内荧光强度高于细胞质。成功构建FoxO1过表达载体,并完成FoxO1重组过表达腺病毒的包装与扩繁,在感染牛骨骼肌细胞后,能显著提高FoxO1表达水平(P<0.01)。EdU检测显示过表达FoxO1会显著降低细胞增殖率(P<0.01),流式细胞周期检测显示过表达FoxO1会显著增加G1期细胞数并减少S期和G2期细胞数,抑制细胞G1/S期的转化,并减少G2期细胞的形成。利用qPCR进一步检测发现,增殖相关基因PCNA、CDK1、CDK2、CCNA2、CCNB1、CCND1和CCNE2均极显著下调(P<0.01),促凋亡相关基因BAD和BAX显著上调以及抑凋亡基因BCL2显著下调(P<0.05)。过表达FoxO1导致牛骨骼肌细胞肌管形成量减少,qPCR检测结果发现,骨骼肌分化相关基因MYOD、MYOG、MYF5、MYF6和MYHC的表达量显著下调(P<0.05)。【结论】FoxO1在牛的不同组织中均有表达,是一个广泛存在的转录调控因子,并且在背最长肌组织生长发育不同阶段存在表达差异,起到阶段调控作用。FoxO1在细胞核和细胞质中均发挥重要的转录调控作用,特别是在细胞核内。过表达FoxO1可能通过抑制细胞增殖相关基因和肌细胞分化相关基因的表达,从而抑制牛骨骼肌细胞的增殖与分化,并且可能通过上调促凋亡基因的表达和下调抑凋亡基因的表达来促使牛骨骼肌细胞凋亡的发生。