期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
凯勒流形上Yang-Mills-Higgs流的曲率估计
1
作者 沈正晗 《中国科学技术大学学报》 CAS CSCD 北大核心 2022年第2期1-11,67,共12页
主要研究紧致凯勒流形上Yang-Mills-Higgs流的曲率估计。在Higgs丛不是半稳定并且HarderNarasimhan-Seshadri滤过没有奇点长度为1的假设条件下,证明了与之相应的Hermitian度量对应的曲率是一致有界的。
关键词 Higgs丛 Harder-Narasimhan-Seshadri滤过 yang-mills-higgs 曲率估计
下载PDF
Progress on asymptotic behavior of the Yang-Mills-Higgs flow
2
作者 LI Jia-yu ZHANG Xi 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2013年第4期565-574,共10页
In this note we will introduce our recent work on the existence of approximate Hermitian-Einstein structures on semi-stable Higgs bundles, and the asymptotic behavior of the Yang-Mills-Higgs flow for Higgs pairs at in... In this note we will introduce our recent work on the existence of approximate Hermitian-Einstein structures on semi-stable Higgs bundles, and the asymptotic behavior of the Yang-Mills-Higgs flow for Higgs pairs at infinity. 展开更多
关键词 yang-mills-higgs flow Higgs bundle Khler manifold
下载PDF
Darboux transformation and solitons of Yang-Mills-Higgs equations in R^(2,1) 被引量:1
3
作者 C.H.Gu 谷超豪 《Science China Mathematics》 SCIE 2002年第6期706-715,共10页
The Darboux transformations for soliton equations are applied to the Yang-Mills-Higgs equations.New solutions can be obtained from a known one via universal and purely algebraic formulas. SU(N) soliton solutions are c... The Darboux transformations for soliton equations are applied to the Yang-Mills-Higgs equations.New solutions can be obtained from a known one via universal and purely algebraic formulas. SU(N) soliton solutions are constructed with explicit formulas. The interaction of solitons is described by the splitting theorem:each p-soliton is splitting into p single solitons asymptotically as t →±∞. 展开更多
关键词 yang-mills-higgs equations DARBOUX transformations solitons SPLITTING theorem.
原文传递
Convergence of Yang-Mills-Higgs flow for twist Higgs pairs on Riemann surfaces 被引量:1
4
作者 ZHANG Wei 《Science China Mathematics》 SCIE 2014年第8期1657-1670,共14页
We consider the gradient flow of the Yang-Mills-Higgs functional of twist Higgs pairs on a Hermitian vector bundle(E,H)over Riemann surface X.It is already known the gradient flow with initial data(A0,φ0)converges to... We consider the gradient flow of the Yang-Mills-Higgs functional of twist Higgs pairs on a Hermitian vector bundle(E,H)over Riemann surface X.It is already known the gradient flow with initial data(A0,φ0)converges to a critical point(A∞,φ∞).Using a modified Chern-Weil type inequality,we prove that the limiting twist Higgs bundle(E,d′′A∞,φ∞)coincides with the graded twist Higgs bundle defined by the HarderNarasimhan-Seshadri filtration of the initial twist Higgs bundle(E,d′′A0,φ0),generalizing Wilkin’s results for untwist Higgs bundle. 展开更多
关键词 twist Higgs bundle yang-mills-higgs flow Harder-Narasimhan-Seshadri filtration Chern-Weil formula
原文传递
HEAT FLOW FOR YANG-MILLS-HIGGS FIELDS, PARTⅡ 被引量:1
5
作者 FANG YI, HONG MINCHUN Centre for Mathematica and its Applications, School of Mathematical Sciences, The Australian National University, Canberra, ACT 0200, Australia. 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2001年第2期211-222,共12页
This paper studies the long the behaviour and the blow up phenomenon of the heat flow for the Yang-Mills-Higgs field on a vector bundle over a compact 4-dimensional Riemannian manifold.
关键词 Heat flow yang-mills-higgs field Riemannian manifold
原文传递
HEAT FLOW FORYANG-MILLS-HIGGS FIELDS, PART IHEAT FLOW FORYANG-MILLS-HIGGS FIELDS, PART I
6
作者 Centre for Mathematics and its Applications, School of Mathematical Sciences, The Australian National University, Canberra, ACT 0200, Australia.) 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2000年第4期453-472,共20页
The Yang-Mills-Higgs field generalizes the Yang-Mills field. The authors establish the local existence and uniqueness of the weak solution to the heat flow for the Yang-Mills-Higgs field in a vector bundle over a comp... The Yang-Mills-Higgs field generalizes the Yang-Mills field. The authors establish the local existence and uniqueness of the weak solution to the heat flow for the Yang-Mills-Higgs field in a vector bundle over a compact Riemannian 4-manifold, and show that the weak solution is gauge-equivalent to a smooth solution and there are at most finite singularities at the maximum existing time. 展开更多
关键词 Vector bundle yang-mills-higgs field Heat flow SINGULARITY
原文传递
HEAT FLOW FORYANG-MILLS-HIGGS FIELDS, PART IHEAT FLOW FORYANG-MILLS-HIGGS FIELDS, PART I
7
《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2000年第4期453-472,共页
The Yang-Mills-Higgs field generalizes the Yang-Mills field. The authors establish the local existence and uniqueness of the weak solution to the heat flow for the Yang-Mills-Higgs field in a vector bundle over a comp... The Yang-Mills-Higgs field generalizes the Yang-Mills field. The authors establish the local existence and uniqueness of the weak solution to the heat flow for the Yang-Mills-Higgs field in a vector bundle over a compact Riemannian 4-manifold, and show that the weak solution is gauge-equivalent to a smooth solution and there are at most finite singularities at the maximum existing time. 展开更多
关键词 VECTOR BUNDLE yang-mills-higgs FIELD HEAT flow SINGULARITY
全文增补中
上一页 1 下一页 到第
使用帮助 返回顶部