期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
The Yang-Mills fields on the Minkowski space 被引量:1
1
作者 陆启铿 《Science China Mathematics》 SCIE 1998年第10期1061-1067,共7页
Let the coordinatex=(x 0,x 1,x 2,x 3) of the Minkowski spaceM 4 be arranged into a matrix $$H_x = \left( {\begin{array}{*{20}c} {x^0 + x^1 x^2 + ix^3 } \\ {x^2 - ix^3 x^0 - x^1 } \\ \end{array} } \right).$$ Then the M... Let the coordinatex=(x 0,x 1,x 2,x 3) of the Minkowski spaceM 4 be arranged into a matrix $$H_x = \left( {\begin{array}{*{20}c} {x^0 + x^1 x^2 + ix^3 } \\ {x^2 - ix^3 x^0 - x^1 } \\ \end{array} } \right).$$ Then the Minkowski metric can be written as $$ds^2 = \eta _{jk} dx^j dx^k = det dH_x $$ . Imbed the space of 2 × 2 Hermitian matrices into the complex Grassmann manifoldF(2,2), the space of complex 4-planes passing through the origin ofC 2×4. The closure $\bar M^4 $ ofM 4 inF(2,2) is the compactification ofM 4. It is known that the conformal group acts on $\bar M^4 $ . It has already been proved that onF(2,2) there is anSu(2)-connection $$B(Z, dZ) = \Gamma (Z, dZ) - \Gamma (Z, dZ)^ + - \frac{{tr[\Gamma (Z, dZ) - \Gamma (Z, dZ^ + ]}}{2}I.$$ whereZ is a 2 × 2 complex matrix andZ ?the complex conjugate and transposed matrix ofZ. Restrict this connection to $\bar M^4 $ $$C(H_x ,dH_x ) = [B(Z, dZ)]_{z = H_x } = C_j (x)dx^j ,$$ which is anSu(2)-connection on $\bar M^4 $ . It is proved that its curvature form $$F: = dC + C \Lambda C = \frac{1}{2}\left[ {\frac{{\partial C_k }}{{\partial x^j }} - \frac{{\partial C_j }}{{\partial x^k }} + C_j C_k - C_k C_j } \right]dx^j \Lambda dx^k = :F_{jk} dx^j \Lambda dx^k $$ satisfies the Yang-Mills equation $$\eta ^\mu \left[ {\frac{{\partial F_{jk} }}{{\partial x^l }} + C_l F_{jk} - F_{jk} C_l } \right] = 0.$$ . 展开更多
关键词 yangmills FIELDS MINKOWSKI SPACE LORENTZ manifold.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部