A two-dimensional flow numerical model of the tidal reaches, which total length is more than 700 km, is established from Datong to the Yangtze River estuary. The tidal levels, velocities, diversion ratios and dynamic ...A two-dimensional flow numerical model of the tidal reaches, which total length is more than 700 km, is established from Datong to the Yangtze River estuary. The tidal levels, velocities, diversion ratios and dynamic axes before and after the separate regulation of each reach and combined regulation of all reaches are obtained. The comparative analysis shows that the regulation project of a separate reach basically has no impact on velocity distributions and variations of diversion ratios of upper and lower reaches, the variations of dynamic axes are only within the local scope of the project. The regulation project of a separate reach also has less impact on the water level in the lower adjacent reaches, but will make the water levels in the upper reaches rise. After the implementation of the regulation projects for all reaches, the rise of water level in the upstream reaches will have a cumulative impact.展开更多
The morphological evolution characteristics of the North-South Passage area since the construction of the Yangtze Estuary Deepwater Navigation Channel Project(DNCP)are analyzed on the basis of the measured data.A twod...The morphological evolution characteristics of the North-South Passage area since the construction of the Yangtze Estuary Deepwater Navigation Channel Project(DNCP)are analyzed on the basis of the measured data.A twodimensional morphodynamics numerical model of the Yangtze Estuary is established to verify the morphological evolution of the North-South Passage under the influence of the DNCP and to predict the future evolution in the next 40 years.Data analysis shows that the North Passage has experienced rapid adjustment stages and adaptive stages after the construction of the DNCP.Slow erosion occurred along the main channel,and slow siltation could be observed in the area between the groins.The South Passage showed a state of upper section erosion and down section deposition.At present,the whole South Passage is in a slight erosion state.According to the numerical model,the eroding and silting speed of the North Passage will slow down in the future.The present state that erosion occurs in the main channel and siltation occurs between the groins will continue.The South Passage will still maintain upper section erosion and down section deposition in the future.Due to the main channel erosion of the North Passage and siltation of the South Passage,the sediment division ratio of the North Passage will increase in the future but still be smaller than 50%.After morphological evolution of 40 years,the direction of residual sediment transport caused by M2 and M4 tidal components in the North Passage has not changed,but the transport rate will decrease.It is considered that the morphological evolution of the North-South Passage could reach a relatively stable state after 40 years.展开更多
基金financially supported by the Major Project"Golden Waterway Capacity Enhancement Technology"of Ministry of Transport of China(Grant No.201132874640)
文摘A two-dimensional flow numerical model of the tidal reaches, which total length is more than 700 km, is established from Datong to the Yangtze River estuary. The tidal levels, velocities, diversion ratios and dynamic axes before and after the separate regulation of each reach and combined regulation of all reaches are obtained. The comparative analysis shows that the regulation project of a separate reach basically has no impact on velocity distributions and variations of diversion ratios of upper and lower reaches, the variations of dynamic axes are only within the local scope of the project. The regulation project of a separate reach also has less impact on the water level in the lower adjacent reaches, but will make the water levels in the upper reaches rise. After the implementation of the regulation projects for all reaches, the rise of water level in the upstream reaches will have a cumulative impact.
基金the National Key R&D Program of China(Grant No.2017YFC0405400)the National Natural Science Foundation of China(Grant No.51979172)Innovation Team Project of Estuarine and Coastal Protection and Management(Grant No.Y220013).
文摘The morphological evolution characteristics of the North-South Passage area since the construction of the Yangtze Estuary Deepwater Navigation Channel Project(DNCP)are analyzed on the basis of the measured data.A twodimensional morphodynamics numerical model of the Yangtze Estuary is established to verify the morphological evolution of the North-South Passage under the influence of the DNCP and to predict the future evolution in the next 40 years.Data analysis shows that the North Passage has experienced rapid adjustment stages and adaptive stages after the construction of the DNCP.Slow erosion occurred along the main channel,and slow siltation could be observed in the area between the groins.The South Passage showed a state of upper section erosion and down section deposition.At present,the whole South Passage is in a slight erosion state.According to the numerical model,the eroding and silting speed of the North Passage will slow down in the future.The present state that erosion occurs in the main channel and siltation occurs between the groins will continue.The South Passage will still maintain upper section erosion and down section deposition in the future.Due to the main channel erosion of the North Passage and siltation of the South Passage,the sediment division ratio of the North Passage will increase in the future but still be smaller than 50%.After morphological evolution of 40 years,the direction of residual sediment transport caused by M2 and M4 tidal components in the North Passage has not changed,but the transport rate will decrease.It is considered that the morphological evolution of the North-South Passage could reach a relatively stable state after 40 years.