期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Response to the Lomagundi-Jatuli Event in the southwestern margin of the Yangtze Plate:Evidence from the carbon and oxygen isotopes of the Paleoproterozoic Yongjingshao Formation 被引量:4
1
作者 Jun-ping Liu Wei Yin +5 位作者 Shi-pan Yang Jiang-tai Zhao Wen-tao Zeng Feng Tang Shi-jun He Wei-ke Li 《China Geology》 CAS CSCD 2023年第1期50-60,共11页
The Lomagundi-Jatuli Event(LJE)refers to the significant positive carbon isotope excursion in seawater constituents that occurred immediately after the increase in atmospheric oxygen content during the Paleoproterozoi... The Lomagundi-Jatuli Event(LJE)refers to the significant positive carbon isotope excursion in seawater constituents that occurred immediately after the increase in atmospheric oxygen content during the Paleoproterozoic(2.22-2.06 Ga).Theδ^(13)C values of 46 dolostone samples collected from the Paleoproterozoic Yongjingshao Formation varied in the range of 0.05‰-4.95‰(V-PDB;maximum:4.95‰)in this study,which may be related to the multicellular eukaryotes in the Liangshan Formation in the Yimen Group.They are much higher than theδ^(13)C values of marine carbonates(-1.16‰on average).Theδ^(13)C values of other formations in the Paleoproterozoic Yimen Group are negative.The notable positive carbon isotope anomalies of the Yongjingshao Formation indicate the response to the LJE at the southwestern margin of the Yangtze Block,which is reported for the first time.Furthermore,they are comparable to theδ^(13)C values of carbonates in the Dashiling Formation of the Hutuo Group in the Wutaishan area in the North China Craton,the Wuzhiling Formation of the Songshan Group in the Xiong'er area,Henan Province,and the Dashiqiao Formation of the Liaohe Group in the Guanmenshan area,Liaoning Province.Therefore,it can be further concluded that the LJE is a global event.This study reveals that LJE occurred in Central Yunnan at 2.15-2.10 Ga,lasting for about 50 Ma.The macro-columnar,bean-shaped,and microfilament fossils and reticular ultramicrofossils of multicellular eukaryotes in this period were discovered in the Liangshan Formation of the Yimen Group.They are the direct cause for the LJE and are also the oldest paleontological fossils ever found.The major events successively occurring in the early stage of the Earth include the Great Oxygenation Event(first occurrence),the global Superiortype banded iron formations(BIFs),the Huronian glaciation,the Great Oxygenation Event(second occurrence),the explosion of multicellular eukaryotes,the positive carbon isotope excursion,and the global anoxic and selenium-rich sedimentary event.The authors think that the North China Craton and the Yangtze Craton were possibly in different tectonic locations of the same continental block during the Proterozoic. 展开更多
关键词 Lomagundi-Jatuli Event Eucaryon PALEOPROTEROZOIC Bean-shaped fossil Micro-filament fossil Micro-columnar fossil Carbon and oxygen isotopes yangtze plate Geological survey engineering China
下载PDF
Multistage Deformation in the Northeastern Segment of the Jiangshao Fault (Suture) Belt: Constraints for the Relationship between the Yangtze Plate and the Cathaysia Old Land 被引量:7
2
作者 ZHANG Jin LI Jinyi +2 位作者 XIAO Wenxia FENG Qianwen MA Zongjin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第4期948-978,共31页
Multistage deformation events have occurred in the northeastern Jiangshao Fault (Suture) Belt. The earliest two are ductile deformation events. The first is the ca. 820 Ma top-to-the-northwest ductile thrusting, whi... Multistage deformation events have occurred in the northeastern Jiangshao Fault (Suture) Belt. The earliest two are ductile deformation events. The first is the ca. 820 Ma top-to-the-northwest ductile thrusting, which directly resulted from the collision between the Cathaysia Old Land and the Chencai Arc (?) during the Late Neoproterozoic, and the Jiangnan Orogenic Belt that formed as the ocean closed between the Yangtze Plate and the jointed Cathaysia Old Land and the Chencai Arc due to continuous compression. The second is the ductile left-lateral strike-slipping that occurred in the latest Early Paleozoic. Since the Jinning period, all deformation events represent the reactivation or inversion of intraplate structures due to the collisions between the North China and Yangtze plates during the Triassic and between the Philippine Sea and Eurasian plates during the Cenozoic. In the Triassic, brittle right-lateral strike-slipping and subsequent top-to-the south thrusting occurred along the whole northeastern Jiangshao Fault Zone because of the collision between the North China and Yangtze plates. In the Late Mesozoic, regional extension took place across southeastern China. In the Cenozoic, the collision between the Philippine Sea and Eurasian plates resulted in brittle thrusts along the whole Jiangnan Old land in the Miocene. The Jiangshao Fault Belt is a weak zone in the crust with long history, and its reactivation is one of important characteristics of the deformation in South China; however, late-stage deformation events did not occur beyond the Jiangnan Old Land and most of them are parallel to the strike of the Old Land, which is similar to the Cenozoic deformation in Central Asia. In addition, the Jiangnan old Land is not a collisional boundary between the Yangtze Plate and Cathaysia Old Land in the Triassic. 展开更多
关键词 intraplate deformation Jiangshao Fault (Suture) Belt yangtze plate Cathaysia Old Land Jiangnan Old Land
下载PDF
The Early Breakup of Rodinia Supercontinent in the Northeastern Margin of the Yangtze Plate: New Evidence from SIMS Zircon Ages of the Granitic Gneiss from the Chaolian Island, Shandong Peninsula 被引量:1
3
作者 LIAO Jing YUE Baojing +2 位作者 DING Xue ZHANG He YIN Xuebo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第4期1503-1504,共2页
The amalgamation and breakup mechanisms of the Rodinia supercontinent during the Meso- and Neoproterozoic have been the focus of much research. However, few studies have examined the response of Neoproterozoic tectoni... The amalgamation and breakup mechanisms of the Rodinia supercontinent during the Meso- and Neoproterozoic have been the focus of much research. However, few studies have examined the response of Neoproterozoic tectonics and magmatism along the northeastern margin of the Yangtze Plate to synchronous global events. The Qianliyan Uplift is located on the eastern margin of the Sulu orogenic belt in the ocean, but the tectonic affinity of the uplift and its relationship to the Sulu orogenic belt remains unclear. In this study, we investigated the formation age, geochemical characteristics, genesis type, and affinity of the granitic gneiss on Chaolian Island of the Qianliyan uplift and its tectonic significance. 展开更多
关键词 SIMS The Early Breakup of Rodinia Supercontinent in the Northeastern Margin of the yangtze plate:New Evidence from SIMS Zircon Ages of the Granitic Gneiss from the Chaolian Island Shandong Peninsula
下载PDF
Characteristics of Paleoproterozoic Subduction System in Western Margin of Yangtze Plate
4
作者 Zhang Hongxiang Liu Congqiang Xu Zhifang Geology and Geophysics Institute, Chinese Academy of Sciences, Beijing 100101 Huang Zhilong Geochemistry Institute, Chinese Academy of Sciences, Guiyang 550002 《Journal of Earth Science》 SCIE CAS CSCD 2000年第1期58-67,共10页
Paleoproterozoic subduction strongly occurred in the western margin of Yangtze plate. The basalticandesite volcanics of Ailaoshan Group and Dibadu Formation had been formed during paleo QinghaiTibet oceanic plate s... Paleoproterozoic subduction strongly occurred in the western margin of Yangtze plate. The basalticandesite volcanics of Ailaoshan Group and Dibadu Formation had been formed during paleo QinghaiTibet oceanic plate subduction under the paleoYangtze plate. Their trace element geochemistry suggests that their forming environments are continentalmarginarc and back arcbasin respectively. Consequently, the Paleoproterozoic subduction system in the western margin of Yangtze plate was established. Ailaoshan Group and Dibadu Formation came from an enriched mantle source that was contaminated by crustal sediments carried by subducted slab, and formed the Paleoroterozoic metamorphic basement of western margin of Yangtze plate. Ailaoshan Group is actually western boundary of Yangtze plate. 展开更多
关键词 western margin of yangtze plate Paleoproterozoic subduction system Ailaoshan Group (AG) Dibadu Formation (DF) incompatible element (IE) large ion lithospheric element (LILE) high field strengthen element (HFSE).
下载PDF
Geochemistry and Tectonic Setting of the Eshan Granites in the Southwestern Margin of the Yangtze Plate, Yunnan 被引量:3
5
作者 Jin Hu Shitao Zhang +2 位作者 Guangzheng Zhang Siyu Tao Ying Zhang 《Journal of Earth Science》 SCIE CAS CSCD 2018年第1期130-143,共14页
The extensive Eshan granites of Yunnan are made up of three intrusive units distin- guished by their field contact relations; in descending order of age they are the Pojiao Unit, the Liizicun Unit and the Mokela Unit.... The extensive Eshan granites of Yunnan are made up of three intrusive units distin- guished by their field contact relations; in descending order of age they are the Pojiao Unit, the Liizicun Unit and the Mokela Unit. The Pojiao Unit and Luzicun Unit contain petrographically and geochemically similar rocks but contact relationships show that the latter is younger. The Mokela Unit mainly consists of dykes intruding the other two and has petrographic and geochemical differ-ences. Zircon U/Pb dating and zircon crystallization temperature measurements confirm the se- quence of intrusions. Major and trace element analyses suggest that the magmas of the Pojiao Unit granites derived by partial melting of a clay-poor source from the upper crust; the magmas of the Luzicun Unit granites derived by partial melting of upper crust with a small proportion of middle crust accompanied by crystallization of albite which triggered strength reduction. Both magmas mixed and underwent with crustal contamination, assimilation and fractional crystallization. The magmas of the Mokela Unit derived from residual melts and assimilation of argillaceous rocks. A time sequence of melting, intrusion and deformation events is derived from these results and com- pared with other published tectonic models for the evolution of the SW margin of the Yangtze Plate. Magmatism was initiated by exhumation of upper continental crust during which strongly peralu- minous porphyritic biotite monzogranite granites were produced at ca. 854-852 Ma, and the genesis of two-mica granite reflected a later batch of exhumed melts with crustal contamination, assimilation and fractional crystallization at ca. 842 Ma. Finally biotite alkali-feldspar granite and tourmaline granite magmas experienced strong fractional crystallization, emplaced in the cooling stage at ca. 823 Ma, indicating the end of exhumation. 展开更多
关键词 yangtze plate Eshan GRANITE tectonic evolution continental exhumation post-collision.
原文传递
Relation of Isotope Geochemical Steep Zones with Geophysical Fields and Tectonics in the Junction Area of the Cathaysian,Yangtze and Indochina Plates 被引量:5
6
作者 ZHU Bingquan Dong Yunpeng +1 位作者 CHANG Xiangyang ZHANG Zhengwei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第2期236-240,共5页
Through lead isotope geochemical mapping in the Yunnan-Guizhou area geochemical steep zones (GSZ) have been established, which clearly reveal the junction relationship of the Cathaysian, Yangtze and Indo-China plates.... Through lead isotope geochemical mapping in the Yunnan-Guizhou area geochemical steep zones (GSZ) have been established, which clearly reveal the junction relationship of the Cathaysian, Yangtze and Indo-China plates. GSZ are closey related to gravity Moho gradient zones and lithospheric thickness. The GSZ between the Yangtze and Cathaysian plates is consistent with the Shizong-Mile tectonic belt, where island are basalts are well developed. The Yangtze-Indo-China GSZ is parallel to the Jingdong-Mojiang volcanic belt in rift-island are environments. The evidence of geology, geophysics and geochemistry all indicates that Cathaysia was subducted towards the Yangtze plate and that the Yangtze plate was underthrust beneath the Indo-China, which took place from the Early Carboniferous to the Early Triassic. 展开更多
关键词 junction relationship of the Cathaysia yangtze and Indo-China plates geochemical steep zone gradient zone of gravity Moho
下载PDF
Structural Characteristics and Formation Mechanism in the Micangshan Foreland,South China 被引量:8
7
作者 XU Huaming LIU Shu +3 位作者 QU Guosheng LI Yanfeng SUN Gang LIU Kang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第1期81-91,共11页
Lying at the junction of the Dabashan, Longmenshan and Qinling mountains, the Micangshan Orogenic Belt coupled with a basin is a duplex structure and back-thrust triangular belt with little horizontal displacement, sm... Lying at the junction of the Dabashan, Longmenshan and Qinling mountains, the Micangshan Orogenic Belt coupled with a basin is a duplex structure and back-thrust triangular belt with little horizontal displacement, small thrust faults and continuous sedimentary cover. On the basis of 3D seismic data, and through sedimentary and structural research, the Micangshan foreland can be divided into five subbelts, which from north to south are: basement thrust, frontal thrust, foreland depression-back-thrust triangle, foreland fold belt or anticline belt, and the Tongjiang Depression. Along the direction of strike from west to east, the arcuate structural belt of Micangshan can be divided into west, middle and east segments. During the collision between the Qinling and Yangtze plates, the Micangshan Orogenic Belt was subjected to the interaction of three rigid terranes: Bikou, Foping, and Fenghuangshan (a.k.a. Ziyang) terranes. The collision processes of rigid terranes controlled the structural development of the Micangshan foreland, which are: (a) the former collision between the Micangshan-Hannan and Bikou terranes forming the earlier rudiments of the structure; and (b) the later collision forming the main body of the structural belt. The formation processes of the Micangshan Orogenic Belt can be divided into four stages: (1) in the early stage of the Indosinian movement, the Micangshan-Hannan Rigid Terrane was jointed to the Qinling Plate by the clockwise subduction of the Yangtze Plate toward the Qinling Plate; (2) since the late Triassic, the earlier rudiments of the Tongnanba and Jiulongshan anticlines and corresponding syncline were formed by compression from different directions of the Bikou, Foping and Micangshan-Hannan terranes; (3) in the early stage of the Himalayan movement, the Micangshan-Hannan Terrane formed the Micangshan Nappe torwards the foreland basin and the compression stresses were mainly concentrated along both its flanks, whereas the Micangshan-Hannan Terrane wedged into the Qinling Orogenic Belt with force; (4) in the late stage of the Himalayan movement, the main collision of the Qinling Plate made the old basement rocks of the terrane uplift quickly, to form the Micangshan Orogenic Belt. The Micangshan foreland arcuate structure was formed due to the non-homogeneity of terrane movement. 展开更多
关键词 arcuate structure Bikou duplex structure Foping Micangshan-Hannan orogenic belt terrane SICHUAN yangtze plate
下载PDF
Isotopic Ages of the Penglai Group in the Jiaobei Belt and Their Geotectonic Implications 被引量:1
8
作者 W.R.Fitches C.J.N.Fletcher 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1994年第4期417-433,共17页
The Penglai Group in the Jiaobei Belt is the only remaining cover of the Archaean to Early Proterozoic crystalline basement in eastern Shandong. The ages of deposition of the Penglai Group and of its deformation and m... The Penglai Group in the Jiaobei Belt is the only remaining cover of the Archaean to Early Proterozoic crystalline basement in eastern Shandong. The ages of deposition of the Penglai Group and of its deformation and metamorphism have long been a subject of speculation. Whole-rock Rb-Sr ages, illite-whole-rock pair Rb-Sr ages and illite K-Ar ages recently obtained from the Penglai Group slates are reported and interpreted in this paper. On the basis of structural and metamorphic studies coupled with analyses of illite crystallinity, XRD and SEM , a whole-rock age of 473±32 Ma (Ordovician) is interpreted as the time of termination of burial metamorphism experienced by the Penglai Group. Therefore, the age of the Penghai Group is older than Ordovician. The first-phase folding and syntectonic low greenschist facies metamorphism in the Penglai Group, i.e. the Penglai Movement, took place before 299±4 Ma B.P., i.e in the Late Carboniferous. The Penglai Movement that occurred in the Jiaobei Belt on the southern margin of the North China Plate is attributed to collision between the North China and Yangtze plates along the Jiaonan Collision Belt. This demonstrates that the continent-continent collision between the North China and Yangtze plates east of the Tan-Lu Fault Zone took place in the Late Carboniferous. The collision caused N-S compression and deformation in the southern margin belt of the North China Plate north of the Qinling-Dabieshan-Jiaonan Collision Belt. 展开更多
关键词 illite age Jiaobei Belt North China plate yangtze plate plate collision
下载PDF
Ore-Bearing Formations of the Precambrian in South China and Their Prospects 被引量:1
9
作者 HEJurui WANGAiguo RUIXingjian LIChunhai 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第2期375-379,共5页
In the Precambrian System of the Yangtze and Cathaysian plates six ore-bearing formations can be identified: the Cu-Pb-Zn-bearing formations in volcanic rocks of marine facies of the Neoarchean-Paleoproterozoic, Cu-Au... In the Precambrian System of the Yangtze and Cathaysian plates six ore-bearing formations can be identified: the Cu-Pb-Zn-bearing formations in volcanic rocks of marine facies of the Neoarchean-Paleoproterozoic, Cu-Au-bearing formations and Pb-Zn-bearing formations in volcanic rocks of marine facies of the Mesoproterozoic, Pb-Zn-bearing formations in volcaniclastic rock and carbonate rock of the Neoproterozoic, Fe-Mn-bearing formations in the volcaniclastic rock of the Neoproterozoic, and Ni-Cr-serpentine-bearing formations in ophiolite and ultrabasic rock of the Meso- and Neoproterozoic. They were mostly formed in the marginal rift valleys of the Yangtze and Cathaysian plates, where occur stratabound and stratiform ore deposits, thermal deposits and porphyry polymetallic deposits. The six regions with ore-bearing formations have good prospects for ore deposits. 展开更多
关键词 ore-bearing formation PRECAMBRIAN yangtze and Cathaysian plates PROSPECTS
下载PDF
SHRIMP Zircon U-Pb Ages and Geochemical Characteristics of the Neoproterozoic Granitoids in the Huangling Anticline and Its Tectonic Setting 被引量:7
10
作者 魏运许 彭松柏 +5 位作者 蒋幸福 彭中勤 彭练红 李志宏 周鹏 曾雄伟 《Journal of Earth Science》 SCIE CAS CSCD 2012年第5期659-675,共17页
SHRIMP zircon U-Pb dating of the Neoproterozoic Maoping (茅坪) series (Sandouping (三斗坪) rock suite) granites exposed in the southern part of the Huangling (黄陵) anticline shows that the formation time of S... SHRIMP zircon U-Pb dating of the Neoproterozoic Maoping (茅坪) series (Sandouping (三斗坪) rock suite) granites exposed in the southern part of the Huangling (黄陵) anticline shows that the formation time of Sandouping biotite-hornblende tonalite intrusion, Jinpansi (金盘寺) hornblende-biotite tonalite intrusion, and Longtanping (龙潭坪) monzogranite are 863±9, 842±10, and 844±10 Ma, respectively. Their geochemical features include A/CNK=0.98-1.06, from metaluminous to weakly peraluminous, δ=1.37-1.53, Sm/Nd=0.17-0.24, and RbN/YbN=1.1-3.62. These indicate that the granite rocks are supersaturated SiO2 calc-alkaline granitoids. The characteristic of Sr-Nd isotopic composition is that the values of εNd(t) and εsr(t) are -12.4 to -11.0 and 20.2-32.2, respectively. It also suggests that the material source of the granite rocks mainly originated from the crust, and they formed in a volcanic arc tectonic environment. These facts suggest that the occurrence of Neoproterozoic granitoids in the southern part of the Huangling anticline should be related to an arc environment along an active continental margin caused by southward subduction of oceanic crust beneath the northern Yangtze craton, and the formation age is not later than 863 Ma. 展开更多
关键词 Huangling anticline yangtze plate Neoproterozoic granitoid SHRIMP zircon U-Pbdating geochemistry tectonic setting.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部