The Late Permian was marked by a series of important geological events and widespread organic-rich black shale depositions,acting as important unconventional hydrocarbon source rocks.However,the mechanism of organic m...The Late Permian was marked by a series of important geological events and widespread organic-rich black shale depositions,acting as important unconventional hydrocarbon source rocks.However,the mechanism of organic matter(OM)enrichment throughout this period is still controversial.Based on geochemical data,the marine redox conditions,paleogeographic and hydrographic environment,primary productivity,volcanism,and terrigenous input during the Late Permian in the Lower Yangtze region have been studied from the Putaoling section,Chaohu,to provide new insights into OM accumulation.Five Phases are distinguished based on the TOC and environmental variations.In Phase I,anoxic conditions driven by water restriction enhanced OM preservation.In Phase II,euxinic and cycling hydrological environments were the two most substantial controlling factors for the massive OM deposition.During Phase III,intensified terrestrial input potentially diluted the OM in sediment and the presence of oxygen in bottom water weakened the preservation condition.Phase IV was characterized by a relatively higher abundance of mercury(Hg)and TOC(peak at 16.98 wt%),indicating that enhanced volcanism potentially stimulated higher productivity and a euxinic environment.In Phase V,extremely lean OM was preserved as a result of terrestrial dilutions and decreasing primary productivity.Phases I,II and IV are characterized as the most prominent OM-rich zones due to the effective interactions of the controlling factors,namely paleogeographic,hydrographic environment,volcanism,and redox conditions.展开更多
Indicating the tectonic features of the Hanshan-Wuwei basin can reconstruct the framework of the basins formed in Mesozoic and further understand the Mesozoic tectonic evolution of the South China Block.Studies on sur...Indicating the tectonic features of the Hanshan-Wuwei basin can reconstruct the framework of the basins formed in Mesozoic and further understand the Mesozoic tectonic evolution of the South China Block.Studies on surface structure,regional stress field and deep geophysical characteristics of the Mesozoic Hanshan-Wuwei basin in Lower Yangtze region were carried out.NE-NNE trending folds and faults developed in the northern margin of the basins.The reconstruction of tectonic stress fields indicates four stress stages dominating the basins'evolution including NW-SE compression,N-S compression,NW-SE extension and NWW-SEE compression.2D seismic profiles reveal coexistence of thrust,strike-slip and normal faults in the basin.Combined with regional geological studies,the geodynamic processes for the formation of the Hanshan-Wuwei basin can be divided into five stages:1)During the Late Triassic,EW trending foreland basin was formed by N-S compression;2)From Mid-Jurassic to Late Jurassic,continuous compression strengthened the foreland deformation and formed thrust nappes.In this stage,the integrated foreland basin was compartmentalized or fragmented,and transferred to the broken foreland basin;3)NE-trending sinistral strike-slip movement at the beginning of the Early Cretaceous;4)Regional extension resulted in normal faults and rift basins developing in the Late Cretaceous;5)The NWW-SEE compression at the end of the Late Cretaceous caused NW sinistral strike-slip faults to form,which partly transformed the rift basin.展开更多
In the transitional period between the Middle and the Late Triassic, the Indochina orogeny caused two tectonic events in South China:(1) the formation and uplift of the Qinling-Dabie orogenic belt along the norther...In the transitional period between the Middle and the Late Triassic, the Indochina orogeny caused two tectonic events in South China:(1) the formation and uplift of the Qinling-Dabie orogenic belt along the northern margin of the South China Plate, due to its collision with the North China Plate; and 2) the development of a 1300-km-wide intra-continental orogen in the southeastern part of the South China Plate, which led to a northwestward movement of the foreland thrust-fold zone. These tectonic events resulted in the ending of the Yangtze Platform, and were a stable paleogeographic factor from the Eidacaran to the end of the Middle Triassic. This platform was characterized by the widespread development of shallow-water carbonates. After the end of the Yangtze Platform, the upper Yangtze foreland basin(or Sichuan foreland basin) was formed during the Late Triassic and became a accumulation site of fluvial deposits that are composed of related strata of the Xujiahe Formation. In western Sichuan Province, the Xujiahe Formation overlies the Maantang Formation shallow-water carbonate rocks of the Xiaotangzi Formation siliciclastic rocks(from shelf shales to littoral facies). The sequence-stratigraphic framework of the Upper Triassic in the upper Yangtze foreland basin indicates a particular alluvial architecture, characterized by sequences composed of(1) successions of low-energy fluvial deposits of high-accommodation phases, including coal seams, and(2) high-energy fluvial deposits of low-accommodation phases, including amalgamated river-channel sandstones. The spatial distribution of these fluvial deposits belonging to the Xujiahe Formation and its relative strata is characterized by gradual thinning-out, overlapping, and pinching-out toward both the east and south. This sedimentary record therefore expresses a particular sequence-stratigraphic succession of fluvial deposits within the filling succession of the foreland basin. The sequence-stratigraphic framework for the Upper Triassic in the Upper Yangtze region provides a record of the end of the Yangtze Platform and the formation of the upper Yangtze foreland basin.展开更多
The Upper Ordovician Wufeng-Lower Silurian Longmaxi and the Lower Cambrian Qiongzhusi shales are the major targets for shale gas exploration and development in China.Although the two organic-rich shales share similar ...The Upper Ordovician Wufeng-Lower Silurian Longmaxi and the Lower Cambrian Qiongzhusi shales are the major targets for shale gas exploration and development in China.Although the two organic-rich shales share similar distribution ranges and thicknesses,they exhibit substantially different exploration and development results.This work analyzed the nanopore structures of the shale reservoirs in this region.Pore development of 51 shale samples collected from various formations and locations was compared using the petromineralogical,geochemical,structural geological and reservoir geological methods.The results indicate that the reservoir space in these shales is dominated by organic pores and the total pore volume of micropores,mesopores,macropores in different tectonic areas and formations show different trends with the increase of TOC.It is suggested that organic pores of shale can be well preserved in areas with simple structure and suitable preservation conditions,and the shale with smaller maximum ancient burial depth and later hydrocarbongeneration-end-time is also more conducive to pore preservation.Organic pore evolution models are established,and they are as follows:①Organic matter pore development stage,②Early stage of organic matter pore destruction,and③late stage of organic matter pore destruction.The areas conducive to pore development are favorable for shale gas development.Research results can effectively guide the optimization and evaluation of favorable areas of shale gas.展开更多
Marine strata are widely exposed in the Hushan and Chaohu areas, Lower Yangtze region. As biomarker geochemistry of the strata has not been well documented, this paper deals with the biomarker composition of represent...Marine strata are widely exposed in the Hushan and Chaohu areas, Lower Yangtze region. As biomarker geochemistry of the strata has not been well documented, this paper deals with the biomarker composition of representative samples collected from the Silurian, Carboniferous and Triassic systems and their geological implications, thus providing clues to marine organic matter. On the basis of experimental results, it is shown that abundant biomarkers (e.g. n-alkanes, isoprenoids, terpanes and steranes) were detected. As organic matter in the strata is highly to over mature in general based on petrologic microobservation, some biomarkers (mainly n-alkanes) except terpanes and steranes cannot reflect the source, depositional environment and maturity of organic matter. Thus, primarily based on analyses of the terpanes and steranes, it is suggested that organic matter in the Silurian and Carboniferous strata is derived mainly from lower organisms, while higher plants are predominant in the Triassic organic matter. This further indicates that the depositional environment may have transformed from the marine to continental facies in the Late Triassic. These results provide new evidence for the study of regional depositional evolution, and have enriched the study of biological composition of organic matter. In addition, the biomarker geochemistry of organic matter at high to over maturation stage is addressed.展开更多
The Permian global mass extinction events and the eruption of the Emeishan flood basalts in the Upper Yangtze region should display certain responses during the evolution of carbon isotope. In this paper, the Permian ...The Permian global mass extinction events and the eruption of the Emeishan flood basalts in the Upper Yangtze region should display certain responses during the evolution of carbon isotope. In this paper, the Permian carbon isotopic evolution in the Upper Yangtze region is examined through systematic stratotype section sampling and determination of 13 C in the northern Upper-Yangtze regions and Southern China. Additionally, the carbon isotopic evolution response characteristics of the geological events in the region are evaluated, comparing the sea-level changes in the Upper Yangtze region and the global sea-level change curves. Results of this study indicated that the carbon isotopic curves of the Permian in the Upper Yangtze region are characterized by higher background carbonisotope baseline values, with three distinct negative excursions, which are located at the Middle–Late Permian boundary and the late period and end of the Late Permian. The three distinct negative excursions provide an insightful record of the global Permian mass extinction events and the eruption of the Emeishan flood basalts in the Upper Yangtze region. The first negative excursion at the Middle–Late Permian boundary reflected the eruption of the Emeishan flood basalts, a decrease in sea level, and biological extinction events of different genera in varying degrees. The second negative excursion in the Late Permian included a decrease in sea level and large-scale biological replacement events. The third negative excursion of the carbon isotope at the end of the Permian corresponded unusually to a rise rather than a decrease in sea level, and it revealed the largest biological mass extinction event in history.展开更多
The paleotectonic pattern,lithofacies paleogeographic features,sedimentary evolution and its controlling effects on hydrocarbon accumulation assemblages during the depositional period of the Sinian Dengying Formation ...The paleotectonic pattern,lithofacies paleogeographic features,sedimentary evolution and its controlling effects on hydrocarbon accumulation assemblages during the depositional period of the Sinian Dengying Formation in middle-upper Yangtze region were investigated based on outcrops,drilling,log and seismic data.The study shows that,(1)Affected by the breakup of the Rodinia supercontinent,the middle and upper Yangtze areas were in extensional tectonic environment during the depositional period of Dengying Formation.The carbonate platform was structurally differentiated.Intra-platform depressions controlled by syndepositional faults developed,forming a tectonic-paleogeographic pattern of"three platforms with two depressions".(2)During the depositional period of the first and second members of the Dengying Formation,rimmed platforms and intra-platform fault depressions developed in upper Yangtze area and isolated platform developed in middle Yangtze area,and there was the Xuanhan-Kaijiang ancient land block in eastern Sichuan.The depositional period of the third member of the Dengying Formation is the transformation period of tectonic-paleogeographic pattern,when a set of shallow water shelf sediment rich in mud was deposited due to transgression on the background of the eroded terrain formed in EpisodeⅠof Tongwan Movement.The sediment of the fourth member of the Dengying Formation inherited the paleogeographic pattern of the first and second members of the Dengying Formation in general,but the Deyang-Anyue intra-platform fault depression further expanded,and the middle Yangtze platform evolved into two separated platforms.(3)Tectonic-sedimentary differentiation and evolution of carbonate platform in the Sinian gave rise to two types of accumulation assemblages with wide distribution and great exploration potential,which are platform margin and intra-platform.展开更多
According to the latest International Chronostratigraphic Scheme (ICS, 2000), the Permian in the Middle Lower Yangtze region of South China can be divided into three series and nine stages relevant to the traditional...According to the latest International Chronostratigraphic Scheme (ICS, 2000), the Permian in the Middle Lower Yangtze region of South China can be divided into three series and nine stages relevant to the traditional six stages of South China. From Assellian to Changxingian of Permian, 44 Ma in age range, the strata are composed of 14 third order sequences, each of which is 3.14 Ma in average age range. There is one third order sequence of Zisongian, equivalent to middle and upper Chuanshan Formation or equal to Asselian and two thirds of Sakmarian. There are two third order sequences, corresponding to Liang shan Formation or Zhenjiang Formation and upper Chuanshan Formation, which are assigned to Longlingian, coinciding with Artinskian and one third of Sakmarian. In addition, three third order sequences, equal to Qixia Formation, are attributed to Chihsian, corresponding to Kubergandian and one third of Roadian. Four third order sequences, comprising Gufeng, Maokou, Yanqiao, Yinping and Wuxue formations, are assigned to Maokouan, equivalent to two thirds of Roadian, Wordian and Capitanian. Two third order sequences, equal to Longtan Formation or Wujiaping Formation, are included in Wuchiapingian. Other two third order sequences, corresponding to Changxing Formation or Dalong Formation, are assigned to Changhsingian. In brief, these above third order sequences can be incorporated into 4 sequences sets.展开更多
Based on outcrop, drilling, logging and seismic data, the reservoir forming conditions, reservoir forming model and exploration potential of the ultra-deep Sinian Dengying Formation at the northwest margin of Yangtze ...Based on outcrop, drilling, logging and seismic data, the reservoir forming conditions, reservoir forming model and exploration potential of the ultra-deep Sinian Dengying Formation at the northwest margin of Yangtze craton region were examined.(1) This area is in craton rifting stage from Sinian to Early Cambrian, characterized by syn-sedimentary faults and rapid subsidence, significant sedimentary differences, and development of Dengying Formation platform margins on both sides of the rift.(2) The Sinian–Cambrian in this area has two sets of high-quality source rocks, Doushantuo Formation and Maidiping-Qiongzhusi Formation;of which, the latter has a thickness of 150–600 m and hydrocarbon generation intensity of(100-200)×10;m;/km;.(3) The mounds and shoals in the platform margin of Sinian Dengying Formation controlled by faults are thick and distributed in rows and zones;they are reformed by contemporaneous–quasi-contemporaneous and supergene karstification jointly, forming pore-type reservoirs with a thickness of 200-400 m.(4) The two sets of source rocks enter oil generation windows from Permian to Early Triassic, and the oil migrates a short distance to the lithologic traps of mounds and shoals to form a huge scale paleo-oil reservoir group;from Late Triassic to Jurassic, the oil in the paleo-oil reservoirs is cracked into gas, laying the foundation of present natural gas reservoirs.(5) The mound-shoal body at the platform margin of Dengying Formation and the two sets of high-quality source rocks combine into several types of favorable source-reservoir combinations, which, with the advantage of near-source and high-efficiency reservoir formation, and can form large lithologic gas reservoirs. The Mianyang-Jiange area is a potential large gas field with trillion cubic meters of reserves. According to seismic prediction, the Laoguanmiao structure in this area has the Deng-2 Member mound-shoal reservoir of about 1300 km^(2), making it a ultra-deep target worthy of exploration in the near future.展开更多
As one of the most important constitutes of shales/mudstones,quartz has received increasing interests in the last decades,because productive shale gas successions are generally rich in quartz content.This study critic...As one of the most important constitutes of shales/mudstones,quartz has received increasing interests in the last decades,because productive shale gas successions are generally rich in quartz content.This study critically documents quartz types,silica source for quartz cementation and effect of quartz cementation on reservoir quality in the Lower Paleozoic shales,Middle Yangtze region,South China,including the Lower Cambrian Niutitang Formation and the Upper Ordovician-Lower Silurian Wufeng-Longmaxi formations.Our results suggest that high-resolution scanning electron microscopy combined with cathodoluminescene techniques are necessary for identifying quartz types in shales.Integrations of high-resolution imaging technique and detailed geochemical analysis are able to document silica source for quartz cementation and silica diagenetic processes.Six types of quartz can be identified in the Paleozoic shales,primarily including detrital quartz silt,siliceous skeletons,quartz overgrowth,microcrystalline quartz(matrix-dispersed microquartz and aggregated microquartz),silica nanospheres and fracture-filling quartz veins.Dissolution of siliceous skeletons provides the principal silica sources for authigenic quartz formation in the Paleozoic shales.Authigenic quartz has dual effects on porosity development.Quartz overgrowth definitely occupies interparticle pores and possibly squeeze spaces,whereas aggregated microquartz can form rigid framework that is favorable for generating and preserving intercrystalline pores and organic pores.展开更多
The ecological footprint was employed as a quantitative indicator of resource inputs,enabling a detailed account of the structure of biological resources and energy occupancy,as well as the variation of resource produ...The ecological footprint was employed as a quantitative indicator of resource inputs,enabling a detailed account of the structure of biological resources and energy occupancy,as well as the variation of resource productivity in the Yangtze River Delta(YRD)Region.From 2004 to 2018,there were notable variations in the ecological productivity of different types of land on basis of China’s equilibrium factor across the three provinces and one city in the YRD region.Jiangsu Province exhibited the highest ecological productivity of arable land,while Anhui Province exhibited the highest ecological productivity of forest land.Shanghai City exhibited the highest ecological productivity of pasture land,while Zhejiang Province exhibited the highest ecological productivity of water area.In 2018,the proportion of arable land within the total ecological carrying capacity of the YRD region reached 74.35%.Furthermore,the contribution of Jiangsu and Anhui provinces to the YRD’s total ecological carrying capacity was 41.36%and 41.26%,respectively.In the construction of a new development pattern in the YRD region,which is dominated by the domestic cycle as the main body and mutually reinforced by domestic and international double-cycle,the YRD region should combine the utilization of natural forces with innovation in science,technology and cooperation mechanisms.Furthermore,the government should guide the concentration of social capital towards green industries.It is also recommended that the moderate reduction of ecological footprints should be encouraged,and that the security of biological resources and energy,the leadership in the field of cutting-edge science and technology should be ensured in YRD region.This will facilitate the formation of a new development pattern of higher-quality integration at the national level firstly.展开更多
Analysis on P205 and REE (rare earth elements) in basal Cambrian phosphorites from the Yangtze Region, showed that the phosphorites from Bailongtan in Yunnan Province, Zhijin, Jinsha, Xishui, Zunyi, Tianzhu and Tong...Analysis on P205 and REE (rare earth elements) in basal Cambrian phosphorites from the Yangtze Region, showed that the phosphorites from Bailongtan in Yunnan Province, Zhijin, Jinsha, Xishui, Zunyi, Tianzhu and Tongren in Guizhou Province, Shan- grao in Jiangxi Province, Jiangshan in Zhejiang Province and Nanjing in Jiangsu Province contained high REE contents in phos- phorites, especially those from Tianzhu and Tongren in Guizhou Province, Shangrao in Jiangxi Province, Jiangshan in Zhejiang Province and Nanjing in Jiangsu Province. Among them, the highest REE contents reached up to 1361.59×10^-6 and P205 contents up to 29.45%. In contrast, phosphorites from Kaiyang, Qingzhen and Zhenyuan in Guizhou Province had relatively low total REE con- tents and low P205 contents, with the lowest total REE content of 53.19× 10^-6, and the lowest P205 content of 0.07%. REE contents exhibited a positive correlation with phosphorous contents, indicating a close genetic relationship between REE and phosphorous ele- ment. The main reason was the difference of the sedimentary environments and the contents of phosphorous and REE in deep water mass formed in upwelling currents, at an upper slope facies (Slu) in reducing condition due to relatively closed sedimentary environ- ment. It was very difficult for the upswelling phosphorous and REE to deposit, massive phosphorous deposits were hard to be formed. At a deep water ramp facies (DRa) in the ascending process of currents, phosphorus and REE underwent differentiation rather than sedimentation. Consequently, the contents of P205 sediments and REE were low. At a shallow water ramp facies (including shoals and tidal flats) (SRa), with active seawater circulation and phosphatic supplement, sunny weather, high nutrition and rapid growth of algae, were benefitial for the physical enrichment of carbonate sediments. Therefore, massive phosphorite deposits were easy to be tbrmed with abundant REE minerals, and finally turned into high REE beating phosphorous deposits.展开更多
[Objective]Characteristics of heavy metal pollution in soil and rice of Yangtze River Delta Region were studied.[Method]Heavy metal contents of more than 150 samples in Yangtze River Delta region were determined so as...[Objective]Characteristics of heavy metal pollution in soil and rice of Yangtze River Delta Region were studied.[Method]Heavy metal contents of more than 150 samples in Yangtze River Delta region were determined so as to make the soil environmental quality assessment and study the content distribution,transformation and distribution characteristics of heavy metals in different regions and different plant parts.[Result]The Yangtze River Delta region was polluted by Cd,Pb,Cr,Cu and Zn,among them Cd pollution was the most serious;Pb,Cu and Zn took second place;Cr appears the lightest;And there was almost no Hg and As pollution in this area.The Nemero pollution index of soil was 0.880 which was at the alert level.Cd,Cr,Cu,Hg and Zn in rice grains exceeded the background values.Heavy metal pollutions in soils divided by regions were in order of Taihu Lake region 〉Zhejiang region〉 Yangtze River region and urban areas 〉towns and rural areas.Heavy metal pollutions in soil divided by the uptake level were in order of rhizosphere soil 〉rice straw 〉rice grain.Transformation coefficients were in order of Cd〉 Cu 〉Zn〉 As 〉Hg〉 Pb〉 Cr.Distribution coefficients were in order of Zn〉 Cr〉 Cd 〉Cu〉 Hg 〉Pb 〉As.[Conclusion]There were larger value ranges of contaminated elements in the Yangtze River Delta Region,moreover individual samples had serious pollution,so the prevention and control of heavy metal pollution should be strengthened.展开更多
The lithofacies palaeogeography of the Late Permian Wujiaping Age in Middle and Upper Yangtze Region was studied based on petrography and the "single factor analysis and multifactor comprehensive mapping" method. Th...The lithofacies palaeogeography of the Late Permian Wujiaping Age in Middle and Upper Yangtze Region was studied based on petrography and the "single factor analysis and multifactor comprehensive mapping" method. The Upper Permian Wujiaping Stage in the Middle and Upper Yangtze Region is mainly composed of carbonate rocks and clastic rocks, with lesser amounts of siliceous rocks, pyroclastic rocks, volcanic rocks and coal. The rocks can be divided into three types, including clastic rock, clastic rock-limestone and limestone-siliceous rock, and four fundamental ecological types and four fossil assemblages are recognized in the Wujiaping Stage. Based on a petrological and palaeoecological study, six single factors were selected, namely, thickness (m), content (%) of marine rocks, content (%) of shallow water carbonate rocks, content (%) of biograins with limemud, content (%) of thinbedded siliceous rocks and content (%) of deep water sedimentary rocks. Six single factors maps of the Wujiaping Stage and one lithofacies palaeogeography map of the Wujiaping Age were composed. Palaeogeographic units from west to east include an eroded area, an alluvial plain, a clastic rock platform, a carbonate rock platform where biocrowds developed, a slope and a basin. In addition, a clastic rock platform exists in the southeast of the study area. Hydro- carbon source rock and reservoir conditions were preliminarily analyzed based on lithofacies palaeogeography. Sedimentary environments have obvious controls over the development of the resource rocks. With regard to the abundance of organic matter, the hydrocarbon potential of the coastal swamp environment is the best, followed by the basin environment and the carbonate rock platform. The gas reservoir types of the Wujiaping Stage can be classified as conventional and unconventional gas reservoirs, like coal bed gas and shale gas; all of them have well exploration prospects.展开更多
Based on the petrological study,according to single factor analysis and multifactor comprehensive mapping method,the quantitative lithofacies palaeogeography of the Upper Permian Changxing Stage of the Middle and Uppe...Based on the petrological study,according to single factor analysis and multifactor comprehensive mapping method,the quantitative lithofacies palaeogeography of the Upper Permian Changxing Stage of the Middle and Upper Yangtze Region was studied.The Changxing Stage in the Middle and Upper Yangtze Region is mainly composed of carbonate rocks;in addition,clastic and siliceous rocks occur with rare coals and pyroclastic rocks.Lithofacies can be divided into five types,including clastic rock assemblage,clastic rock-limestone assemblage,limestone assemblage,limestone-siliceous rock assemblage,and siliceous rock-clastic rock assemblage.Four fundamental ecological types and five fossil assemblages were recognized in the Changxing Stage.On the basis of the petrological and palaeoecological study,eight single factors were chosen including thickness,content of marine rocks,content of shallow water carbonate rocks,content of bioclasts with limemud matrix,content of bioclasts with sparry cement,distribution of reefs,content of thin bedded siliceous rocks and content of deep water sedimentary rocks.And eight single factor maps and one lithofacies paleogeographic map of the Changxing Stage were compiled.Paleoenvironments from west to east include an erosional area,fluvial plain,clastic platform,carbonate platform and reefs that developed there,slope and basin,low energy organic banks,and high energy organic banks.Sedimentary environments have an obvious control on the development of the source rocks,and the excellent source rocks are developed in the Dalong Formation.Changxing Stage reservoirs should be dominated by the reef and platform surrounding the GuangyuanLiangping Basin rim area,and is the most favorable exploration area of the reef petroleum reservoirs of the Changxing Formation.展开更多
A discussion of collision orogenic deformation has been made for the Middle Yangtze Region. Based on its deformation assemblage orders, three developing stages are classified successively as compression thrust uplift,...A discussion of collision orogenic deformation has been made for the Middle Yangtze Region. Based on its deformation assemblage orders, three developing stages are classified successively as compression thrust uplift, strike-slip escape rheology and tension extension inversion. The collision orogenesis of the studied region has been divided into three developing periods of initial, chief and late orogeny. Based on the data from Wugong Mts., Jiuling Mts. and Xuefeng Mts.,for each stage, its variation of stress and strain axes, the conversion of joint fractures and their relative tectonic evolution are described, models are plotted and corresponding explanations are made for the rock chronology dating value in the same tectonic period.展开更多
Wide distribution of the black shales and diversification of the graptolite fauna in South China during the Late Ordovician resulted from its unique paleogeographic pattern, which was significantly affected by the pal...Wide distribution of the black shales and diversification of the graptolite fauna in South China during the Late Ordovician resulted from its unique paleogeographic pattern, which was significantly affected by the paleogeographic evolution of the Lower Yangtze region. In the study, 120 Upper Ordovician sections from the Lower Yangtze region were collected, and a unified biostratigraphic framework has been applied to these sections to establish a reliable stratigraphic subdivision and correlation. Under the unified time framework, we delineate the distribution area of each lithostratigraphic unit, outline the boundary between the sea and land, and reconstruct the paleogeographic pattern for each graptolite zone. The result indicates that, with the uplift and expansion of the ‘Jiangnan Oldland' in the beginning of the late Katian, the oldland extended into the Yangtze Sea gradually from south to north, which finally separate the Jiangnan Slope and the Yangtze Platform. Consequently,the longstanding paleogeographic pattern of "platform-slope-basin" in South China was broken. The paleogeographic change led to sedimentary differentiation among the two sides of the ‘Jiangnan Oldland' during the Late Ordovician. This event also led to the closure of the eastern exit of the Upper Yangtze Sea, and formed a semi-closed, limited and stagnant environment for the development of the organic-rich black shales during the Late Ordovician. The major controlling factors of these paleogeographic changes in the Lower Yangtze region were not consistent from the Katian to the Hirnantian. In the late Katian, the sedimentary differentiation between the east and west sides mostly resulted from regional tectonic movement-the Kwangsian Orogeny.However, during the Hirnantian, the whole Yangtze region became shallower, which was mostly influenced by the concentration of the Gondwana ice sheet and the consequent global sea level drop.展开更多
Based on the analysis of the deformation styles in different tectonic belts of the MiddleUpper Yangtze region,as well as the dissection of typical hydrocarbon reservoirs,this study determined the controlling effects o...Based on the analysis of the deformation styles in different tectonic belts of the MiddleUpper Yangtze region,as well as the dissection of typical hydrocarbon reservoirs,this study determined the controlling effects of deformations on the hydrocarbon accumulations,obtaining the following results.The Middle-Upper Yangtze region experienced significant deformations during the Late Indosinian(T_(2)–T_(3)),the Middle Yanshanian(J_(3)–K_(1)),and the Himalayan,and five styles of tectonic deformations mainly occurred,namely superimposed deep burial,uplift,compressional thrusting,multi-layer decollement,and secondary deep burial.The distribution of hydrocarbon reservoirs in the piedmont thrust belts is controlled by the concealed structures on the footwall of the deep nappe.The gentle deformation area in central Sichuan experienced differential uplift,structural-lithologic hydrocarbon reservoirs were formed over a wide area.The eastern Sichuan-western Hunan and Hubei deformation area experienced Jura Mountains-type multi-layer detachment,compressional thrusting,and uplift.In relatively weakly folded and uplifted areas,conventional structural-lithologic hydrocarbon reservoirs have undergone adjustment and re-accumulation,and the shale gas resources are well preserved.In the strongly deformed areas,conventional hydrocarbon reservoirs were destroyed,while unconventional hydrocarbon reservoirs have been partially preserved.The marine strata in the Jianghan Basin experienced compression,thrusting,and denudation in the early stage and secondary deep burial in the late stage.Consequently,the unconventional gas resources have been partially preserved in these strata.Secondary hydrocarbon generation become favorable for conventional hydrocarbon accumulations in the marine strata.展开更多
In the era of economic globalization,the concept of Economic Polarized Area comes into being as an effective vehicle to agglomerate the economic elements and sustain the economic lifeline of the region. Based on the r...In the era of economic globalization,the concept of Economic Polarized Area comes into being as an effective vehicle to agglomerate the economic elements and sustain the economic lifeline of the region. Based on the region's specific development mode and construction form the concept is working in such a way that it will contribute to guide the economic development of the country and will play an important role in competing with other regions or countries in the world. Due to the high speed development of the last 30 years,the Yangtze Delta Region starts to show the features of Economic Polarized Area. But,compared with other world-class Economic Polarized Areas,the economic strength and the ability of the Yangtze Delta Region to drive the country's economic development is still very low and the competitive power is still very limited. Expanding the boundaries of the Economic Polarized Area of the Yangtze Delta may extend the economic hinterland of the core area of the Yangtze Delta Region,will lighten the pressures from the limited resource and promote the rationalization of the industrial structure in the Yangtze Delta Region's core area. With regard to the reasonable boundaries of the Yangtze Delta Region,there are different opinions and controversial arguments in political and academic circles. Starting from the idea of increasing the competitive power and improving the economic strength of the Yangtze Delta Region,the paper firstly is discussing the requirements to become a world-class Economic Polarized Area. In a second step an analysis of functional complementation and economic collaboration between the cities of an "extended" Yangtze Delta Region has been carried out by in particular considering the feasibility of integrating these "newly included" cities. The final result of the study is,that the Region should be expanded from the number of 16 cities to 37 cities,and the appended cities should be divided up into two categories:Wenzhou,Jinhua,Yancheng,Huaian,Maanshan,Wuhu,Tongling,Chaohu,Hefei,Chuzhou,Xuancheng should be taken as Preferred Extending Area,and Suqian,Xuzhou,Lianyungang,Lishui,Quzhou,Chizhou,Anqing,Bengbu,Huangshan,Suzhou (Anhui Province) should be taken as Retained Qualification Area.展开更多
This paper studies the relationship between net primary productivity (NPP) and annual average air temperature (GT) at 0cm above ground in permafrost regions by using revised Chikugo NPP model,cubic spline interpolatin...This paper studies the relationship between net primary productivity (NPP) and annual average air temperature (GT) at 0cm above ground in permafrost regions by using revised Chikugo NPP model,cubic spline interpolating functions,and non-linear regression methods.The source regions of the Yangtze and Yellow Rivers were selected as the research areas.Results illustrate that:(1) There is significant non-linear relationship between NPP and GT in various typical years;(2) The maximum value of NPP is 6.17,5.87,7.73,and 5.41 DM·t·hm-2 ·a-1 respectively,and the corresponding GT is 7.1,10.0,21.2,and 8.9 o C respectively in 1980,1990,2000 and 2007;(3) In 1980,the sensitivity of NPP to GT is higher than in 1990,2000 and 2007.This tendency shows that the NPP presents change from fluctuation to an adaptation process over time;(4) During 1980~2007,the accumulated NPP was reduced to 8.05,and the corresponding carrying capacity of theoretical livestock reduced by 11%;(5) The shape of the demonstration region of ecological compensation system,livelihood support system,and science appraisal system in the source regions of Yangtze and Yellow Rivers are an important research for increasing the adaptation capacity and balancing protection and development.展开更多
基金supported by the Fundamental and Commonwealth Geological Survey of Oil and Gas of China(Grant No.DD 20221662)the National Natural Science Foundation of China(NSFC)Program(Grant No.42302124).
文摘The Late Permian was marked by a series of important geological events and widespread organic-rich black shale depositions,acting as important unconventional hydrocarbon source rocks.However,the mechanism of organic matter(OM)enrichment throughout this period is still controversial.Based on geochemical data,the marine redox conditions,paleogeographic and hydrographic environment,primary productivity,volcanism,and terrigenous input during the Late Permian in the Lower Yangtze region have been studied from the Putaoling section,Chaohu,to provide new insights into OM accumulation.Five Phases are distinguished based on the TOC and environmental variations.In Phase I,anoxic conditions driven by water restriction enhanced OM preservation.In Phase II,euxinic and cycling hydrological environments were the two most substantial controlling factors for the massive OM deposition.During Phase III,intensified terrestrial input potentially diluted the OM in sediment and the presence of oxygen in bottom water weakened the preservation condition.Phase IV was characterized by a relatively higher abundance of mercury(Hg)and TOC(peak at 16.98 wt%),indicating that enhanced volcanism potentially stimulated higher productivity and a euxinic environment.In Phase V,extremely lean OM was preserved as a result of terrestrial dilutions and decreasing primary productivity.Phases I,II and IV are characterized as the most prominent OM-rich zones due to the effective interactions of the controlling factors,namely paleogeographic,hydrographic environment,volcanism,and redox conditions.
基金supported by National Natural Science Foundation of China(Grant Nos.42372239,41872237 and 41573023)the projects of China Geological Survey(Grant Nos.DD20160180,DD20190083,DD20190043,DD20221633)。
文摘Indicating the tectonic features of the Hanshan-Wuwei basin can reconstruct the framework of the basins formed in Mesozoic and further understand the Mesozoic tectonic evolution of the South China Block.Studies on surface structure,regional stress field and deep geophysical characteristics of the Mesozoic Hanshan-Wuwei basin in Lower Yangtze region were carried out.NE-NNE trending folds and faults developed in the northern margin of the basins.The reconstruction of tectonic stress fields indicates four stress stages dominating the basins'evolution including NW-SE compression,N-S compression,NW-SE extension and NWW-SEE compression.2D seismic profiles reveal coexistence of thrust,strike-slip and normal faults in the basin.Combined with regional geological studies,the geodynamic processes for the formation of the Hanshan-Wuwei basin can be divided into five stages:1)During the Late Triassic,EW trending foreland basin was formed by N-S compression;2)From Mid-Jurassic to Late Jurassic,continuous compression strengthened the foreland deformation and formed thrust nappes.In this stage,the integrated foreland basin was compartmentalized or fragmented,and transferred to the broken foreland basin;3)NE-trending sinistral strike-slip movement at the beginning of the Early Cretaceous;4)Regional extension resulted in normal faults and rift basins developing in the Late Cretaceous;5)The NWW-SEE compression at the end of the Late Cretaceous caused NW sinistral strike-slip faults to form,which partly transformed the rift basin.
基金funded by the Natural Sciences Foundation of China (grant No.41030318)
文摘In the transitional period between the Middle and the Late Triassic, the Indochina orogeny caused two tectonic events in South China:(1) the formation and uplift of the Qinling-Dabie orogenic belt along the northern margin of the South China Plate, due to its collision with the North China Plate; and 2) the development of a 1300-km-wide intra-continental orogen in the southeastern part of the South China Plate, which led to a northwestward movement of the foreland thrust-fold zone. These tectonic events resulted in the ending of the Yangtze Platform, and were a stable paleogeographic factor from the Eidacaran to the end of the Middle Triassic. This platform was characterized by the widespread development of shallow-water carbonates. After the end of the Yangtze Platform, the upper Yangtze foreland basin(or Sichuan foreland basin) was formed during the Late Triassic and became a accumulation site of fluvial deposits that are composed of related strata of the Xujiahe Formation. In western Sichuan Province, the Xujiahe Formation overlies the Maantang Formation shallow-water carbonate rocks of the Xiaotangzi Formation siliciclastic rocks(from shelf shales to littoral facies). The sequence-stratigraphic framework of the Upper Triassic in the upper Yangtze foreland basin indicates a particular alluvial architecture, characterized by sequences composed of(1) successions of low-energy fluvial deposits of high-accommodation phases, including coal seams, and(2) high-energy fluvial deposits of low-accommodation phases, including amalgamated river-channel sandstones. The spatial distribution of these fluvial deposits belonging to the Xujiahe Formation and its relative strata is characterized by gradual thinning-out, overlapping, and pinching-out toward both the east and south. This sedimentary record therefore expresses a particular sequence-stratigraphic succession of fluvial deposits within the filling succession of the foreland basin. The sequence-stratigraphic framework for the Upper Triassic in the Upper Yangtze region provides a record of the end of the Yangtze Platform and the formation of the upper Yangtze foreland basin.
基金supported by the National Science and Technology Major Project(Grant No.2017ZX05035)
文摘The Upper Ordovician Wufeng-Lower Silurian Longmaxi and the Lower Cambrian Qiongzhusi shales are the major targets for shale gas exploration and development in China.Although the two organic-rich shales share similar distribution ranges and thicknesses,they exhibit substantially different exploration and development results.This work analyzed the nanopore structures of the shale reservoirs in this region.Pore development of 51 shale samples collected from various formations and locations was compared using the petromineralogical,geochemical,structural geological and reservoir geological methods.The results indicate that the reservoir space in these shales is dominated by organic pores and the total pore volume of micropores,mesopores,macropores in different tectonic areas and formations show different trends with the increase of TOC.It is suggested that organic pores of shale can be well preserved in areas with simple structure and suitable preservation conditions,and the shale with smaller maximum ancient burial depth and later hydrocarbongeneration-end-time is also more conducive to pore preservation.Organic pore evolution models are established,and they are as follows:①Organic matter pore development stage,②Early stage of organic matter pore destruction,and③late stage of organic matter pore destruction.The areas conducive to pore development are favorable for shale gas development.Research results can effectively guide the optimization and evaluation of favorable areas of shale gas.
基金funded by the National Natural Science Foundation of China (Grant Nos. 41072090 and 40872086)the Undergraduate Innovation Program of Nanjing Universitythe Open Project Program of Key Laboratory of Tectonics and Petroleum Resources (China University of Geosciences), Ministry of Education (Grant No. TPR-2010-26)
文摘Marine strata are widely exposed in the Hushan and Chaohu areas, Lower Yangtze region. As biomarker geochemistry of the strata has not been well documented, this paper deals with the biomarker composition of representative samples collected from the Silurian, Carboniferous and Triassic systems and their geological implications, thus providing clues to marine organic matter. On the basis of experimental results, it is shown that abundant biomarkers (e.g. n-alkanes, isoprenoids, terpanes and steranes) were detected. As organic matter in the strata is highly to over mature in general based on petrologic microobservation, some biomarkers (mainly n-alkanes) except terpanes and steranes cannot reflect the source, depositional environment and maturity of organic matter. Thus, primarily based on analyses of the terpanes and steranes, it is suggested that organic matter in the Silurian and Carboniferous strata is derived mainly from lower organisms, while higher plants are predominant in the Triassic organic matter. This further indicates that the depositional environment may have transformed from the marine to continental facies in the Late Triassic. These results provide new evidence for the study of regional depositional evolution, and have enriched the study of biological composition of organic matter. In addition, the biomarker geochemistry of organic matter at high to over maturation stage is addressed.
基金financially supported by The National Key Research Project of China (No.2016YFC0601003)Northwest University Graduate Innovation and Creativity Funds (YZZ17198)the National Natural Science Foundation of China (Grants No. 41390451 and No. 41172101)
文摘The Permian global mass extinction events and the eruption of the Emeishan flood basalts in the Upper Yangtze region should display certain responses during the evolution of carbon isotope. In this paper, the Permian carbon isotopic evolution in the Upper Yangtze region is examined through systematic stratotype section sampling and determination of 13 C in the northern Upper-Yangtze regions and Southern China. Additionally, the carbon isotopic evolution response characteristics of the geological events in the region are evaluated, comparing the sea-level changes in the Upper Yangtze region and the global sea-level change curves. Results of this study indicated that the carbon isotopic curves of the Permian in the Upper Yangtze region are characterized by higher background carbonisotope baseline values, with three distinct negative excursions, which are located at the Middle–Late Permian boundary and the late period and end of the Late Permian. The three distinct negative excursions provide an insightful record of the global Permian mass extinction events and the eruption of the Emeishan flood basalts in the Upper Yangtze region. The first negative excursion at the Middle–Late Permian boundary reflected the eruption of the Emeishan flood basalts, a decrease in sea level, and biological extinction events of different genera in varying degrees. The second negative excursion in the Late Permian included a decrease in sea level and large-scale biological replacement events. The third negative excursion of the carbon isotope at the end of the Permian corresponded unusually to a rise rather than a decrease in sea level, and it revealed the largest biological mass extinction event in history.
基金Supported by the China National Science and Technology Major Project(2016ZX05004-001)
文摘The paleotectonic pattern,lithofacies paleogeographic features,sedimentary evolution and its controlling effects on hydrocarbon accumulation assemblages during the depositional period of the Sinian Dengying Formation in middle-upper Yangtze region were investigated based on outcrops,drilling,log and seismic data.The study shows that,(1)Affected by the breakup of the Rodinia supercontinent,the middle and upper Yangtze areas were in extensional tectonic environment during the depositional period of Dengying Formation.The carbonate platform was structurally differentiated.Intra-platform depressions controlled by syndepositional faults developed,forming a tectonic-paleogeographic pattern of"three platforms with two depressions".(2)During the depositional period of the first and second members of the Dengying Formation,rimmed platforms and intra-platform fault depressions developed in upper Yangtze area and isolated platform developed in middle Yangtze area,and there was the Xuanhan-Kaijiang ancient land block in eastern Sichuan.The depositional period of the third member of the Dengying Formation is the transformation period of tectonic-paleogeographic pattern,when a set of shallow water shelf sediment rich in mud was deposited due to transgression on the background of the eroded terrain formed in EpisodeⅠof Tongwan Movement.The sediment of the fourth member of the Dengying Formation inherited the paleogeographic pattern of the first and second members of the Dengying Formation in general,but the Deyang-Anyue intra-platform fault depression further expanded,and the middle Yangtze platform evolved into two separated platforms.(3)Tectonic-sedimentary differentiation and evolution of carbonate platform in the Sinian gave rise to two types of accumulation assemblages with wide distribution and great exploration potential,which are platform margin and intra-platform.
文摘According to the latest International Chronostratigraphic Scheme (ICS, 2000), the Permian in the Middle Lower Yangtze region of South China can be divided into three series and nine stages relevant to the traditional six stages of South China. From Assellian to Changxingian of Permian, 44 Ma in age range, the strata are composed of 14 third order sequences, each of which is 3.14 Ma in average age range. There is one third order sequence of Zisongian, equivalent to middle and upper Chuanshan Formation or equal to Asselian and two thirds of Sakmarian. There are two third order sequences, corresponding to Liang shan Formation or Zhenjiang Formation and upper Chuanshan Formation, which are assigned to Longlingian, coinciding with Artinskian and one third of Sakmarian. In addition, three third order sequences, equal to Qixia Formation, are attributed to Chihsian, corresponding to Kubergandian and one third of Roadian. Four third order sequences, comprising Gufeng, Maokou, Yanqiao, Yinping and Wuxue formations, are assigned to Maokouan, equivalent to two thirds of Roadian, Wordian and Capitanian. Two third order sequences, equal to Longtan Formation or Wujiaping Formation, are included in Wuchiapingian. Other two third order sequences, corresponding to Changxing Formation or Dalong Formation, are assigned to Changhsingian. In brief, these above third order sequences can be incorporated into 4 sequences sets.
基金Supported by the PetroChina Forward-looking and Fundamental Major Scientific and Technological Project (2021DJ0605)。
文摘Based on outcrop, drilling, logging and seismic data, the reservoir forming conditions, reservoir forming model and exploration potential of the ultra-deep Sinian Dengying Formation at the northwest margin of Yangtze craton region were examined.(1) This area is in craton rifting stage from Sinian to Early Cambrian, characterized by syn-sedimentary faults and rapid subsidence, significant sedimentary differences, and development of Dengying Formation platform margins on both sides of the rift.(2) The Sinian–Cambrian in this area has two sets of high-quality source rocks, Doushantuo Formation and Maidiping-Qiongzhusi Formation;of which, the latter has a thickness of 150–600 m and hydrocarbon generation intensity of(100-200)×10;m;/km;.(3) The mounds and shoals in the platform margin of Sinian Dengying Formation controlled by faults are thick and distributed in rows and zones;they are reformed by contemporaneous–quasi-contemporaneous and supergene karstification jointly, forming pore-type reservoirs with a thickness of 200-400 m.(4) The two sets of source rocks enter oil generation windows from Permian to Early Triassic, and the oil migrates a short distance to the lithologic traps of mounds and shoals to form a huge scale paleo-oil reservoir group;from Late Triassic to Jurassic, the oil in the paleo-oil reservoirs is cracked into gas, laying the foundation of present natural gas reservoirs.(5) The mound-shoal body at the platform margin of Dengying Formation and the two sets of high-quality source rocks combine into several types of favorable source-reservoir combinations, which, with the advantage of near-source and high-efficiency reservoir formation, and can form large lithologic gas reservoirs. The Mianyang-Jiange area is a potential large gas field with trillion cubic meters of reserves. According to seismic prediction, the Laoguanmiao structure in this area has the Deng-2 Member mound-shoal reservoir of about 1300 km^(2), making it a ultra-deep target worthy of exploration in the near future.
基金financially supported by the SINOPEC Key Laboratory of Geology and Resources in Deep Stratum Foundation(No.33550000-22-ZC0613-0252)the National Natural Science Foundation(Nos.U19B6003,U20B6001 and 42002137)。
文摘As one of the most important constitutes of shales/mudstones,quartz has received increasing interests in the last decades,because productive shale gas successions are generally rich in quartz content.This study critically documents quartz types,silica source for quartz cementation and effect of quartz cementation on reservoir quality in the Lower Paleozoic shales,Middle Yangtze region,South China,including the Lower Cambrian Niutitang Formation and the Upper Ordovician-Lower Silurian Wufeng-Longmaxi formations.Our results suggest that high-resolution scanning electron microscopy combined with cathodoluminescene techniques are necessary for identifying quartz types in shales.Integrations of high-resolution imaging technique and detailed geochemical analysis are able to document silica source for quartz cementation and silica diagenetic processes.Six types of quartz can be identified in the Paleozoic shales,primarily including detrital quartz silt,siliceous skeletons,quartz overgrowth,microcrystalline quartz(matrix-dispersed microquartz and aggregated microquartz),silica nanospheres and fracture-filling quartz veins.Dissolution of siliceous skeletons provides the principal silica sources for authigenic quartz formation in the Paleozoic shales.Authigenic quartz has dual effects on porosity development.Quartz overgrowth definitely occupies interparticle pores and possibly squeeze spaces,whereas aggregated microquartz can form rigid framework that is favorable for generating and preserving intercrystalline pores and organic pores.
基金Sponsored by Talent Project of Tongling University(2021tlxyrc27).
文摘The ecological footprint was employed as a quantitative indicator of resource inputs,enabling a detailed account of the structure of biological resources and energy occupancy,as well as the variation of resource productivity in the Yangtze River Delta(YRD)Region.From 2004 to 2018,there were notable variations in the ecological productivity of different types of land on basis of China’s equilibrium factor across the three provinces and one city in the YRD region.Jiangsu Province exhibited the highest ecological productivity of arable land,while Anhui Province exhibited the highest ecological productivity of forest land.Shanghai City exhibited the highest ecological productivity of pasture land,while Zhejiang Province exhibited the highest ecological productivity of water area.In 2018,the proportion of arable land within the total ecological carrying capacity of the YRD region reached 74.35%.Furthermore,the contribution of Jiangsu and Anhui provinces to the YRD’s total ecological carrying capacity was 41.36%and 41.26%,respectively.In the construction of a new development pattern in the YRD region,which is dominated by the domestic cycle as the main body and mutually reinforced by domestic and international double-cycle,the YRD region should combine the utilization of natural forces with innovation in science,technology and cooperation mechanisms.Furthermore,the government should guide the concentration of social capital towards green industries.It is also recommended that the moderate reduction of ecological footprints should be encouraged,and that the security of biological resources and energy,the leadership in the field of cutting-edge science and technology should be ensured in YRD region.This will facilitate the formation of a new development pattern of higher-quality integration at the national level firstly.
基金Project supported by National Natural Science Foundation of China(50164001)the State Programs of Science and Technology Development funded by The Ministry of Science and Technology of China(2007BAB08B03)+3 种基金the Outstanding Scientific and Technological Talents Fund of Guizhou Province(2009008)the Graduates Innovation Fund of Guizhou University(2010009)the Youth Fund of Guizhou University(2009070)the Youth Fund of College of Resources and Environmental Engineering,Guizhou University(ZHY0901)
文摘Analysis on P205 and REE (rare earth elements) in basal Cambrian phosphorites from the Yangtze Region, showed that the phosphorites from Bailongtan in Yunnan Province, Zhijin, Jinsha, Xishui, Zunyi, Tianzhu and Tongren in Guizhou Province, Shan- grao in Jiangxi Province, Jiangshan in Zhejiang Province and Nanjing in Jiangsu Province contained high REE contents in phos- phorites, especially those from Tianzhu and Tongren in Guizhou Province, Shangrao in Jiangxi Province, Jiangshan in Zhejiang Province and Nanjing in Jiangsu Province. Among them, the highest REE contents reached up to 1361.59×10^-6 and P205 contents up to 29.45%. In contrast, phosphorites from Kaiyang, Qingzhen and Zhenyuan in Guizhou Province had relatively low total REE con- tents and low P205 contents, with the lowest total REE content of 53.19× 10^-6, and the lowest P205 content of 0.07%. REE contents exhibited a positive correlation with phosphorous contents, indicating a close genetic relationship between REE and phosphorous ele- ment. The main reason was the difference of the sedimentary environments and the contents of phosphorous and REE in deep water mass formed in upwelling currents, at an upper slope facies (Slu) in reducing condition due to relatively closed sedimentary environ- ment. It was very difficult for the upswelling phosphorous and REE to deposit, massive phosphorous deposits were hard to be formed. At a deep water ramp facies (DRa) in the ascending process of currents, phosphorus and REE underwent differentiation rather than sedimentation. Consequently, the contents of P205 sediments and REE were low. At a shallow water ramp facies (including shoals and tidal flats) (SRa), with active seawater circulation and phosphatic supplement, sunny weather, high nutrition and rapid growth of algae, were benefitial for the physical enrichment of carbonate sediments. Therefore, massive phosphorite deposits were easy to be tbrmed with abundant REE minerals, and finally turned into high REE beating phosphorous deposits.
基金Supported by the Land and Resource Survey Project of China Geological Survey (GZTR20060201) Natural Science Foundation of Hohai University (2008432511)~~
文摘[Objective]Characteristics of heavy metal pollution in soil and rice of Yangtze River Delta Region were studied.[Method]Heavy metal contents of more than 150 samples in Yangtze River Delta region were determined so as to make the soil environmental quality assessment and study the content distribution,transformation and distribution characteristics of heavy metals in different regions and different plant parts.[Result]The Yangtze River Delta region was polluted by Cd,Pb,Cr,Cu and Zn,among them Cd pollution was the most serious;Pb,Cu and Zn took second place;Cr appears the lightest;And there was almost no Hg and As pollution in this area.The Nemero pollution index of soil was 0.880 which was at the alert level.Cd,Cr,Cu,Hg and Zn in rice grains exceeded the background values.Heavy metal pollutions in soils divided by regions were in order of Taihu Lake region 〉Zhejiang region〉 Yangtze River region and urban areas 〉towns and rural areas.Heavy metal pollutions in soil divided by the uptake level were in order of rhizosphere soil 〉rice straw 〉rice grain.Transformation coefficients were in order of Cd〉 Cu 〉Zn〉 As 〉Hg〉 Pb〉 Cr.Distribution coefficients were in order of Zn〉 Cr〉 Cd 〉Cu〉 Hg 〉Pb 〉As.[Conclusion]There were larger value ranges of contaminated elements in the Yangtze River Delta Region,moreover individual samples had serious pollution,so the prevention and control of heavy metal pollution should be strengthened.
基金supported by the Twelfth Five-Year Plan of major national science and technology project "Study on accumulation conditions and favorable exploration area evaluation of marine carbonate rocks in South China" (2011ZX05004-001-004)
文摘The lithofacies palaeogeography of the Late Permian Wujiaping Age in Middle and Upper Yangtze Region was studied based on petrography and the "single factor analysis and multifactor comprehensive mapping" method. The Upper Permian Wujiaping Stage in the Middle and Upper Yangtze Region is mainly composed of carbonate rocks and clastic rocks, with lesser amounts of siliceous rocks, pyroclastic rocks, volcanic rocks and coal. The rocks can be divided into three types, including clastic rock, clastic rock-limestone and limestone-siliceous rock, and four fundamental ecological types and four fossil assemblages are recognized in the Wujiaping Stage. Based on a petrological and palaeoecological study, six single factors were selected, namely, thickness (m), content (%) of marine rocks, content (%) of shallow water carbonate rocks, content (%) of biograins with limemud, content (%) of thinbedded siliceous rocks and content (%) of deep water sedimentary rocks. Six single factors maps of the Wujiaping Stage and one lithofacies palaeogeography map of the Wujiaping Age were composed. Palaeogeographic units from west to east include an eroded area, an alluvial plain, a clastic rock platform, a carbonate rock platform where biocrowds developed, a slope and a basin. In addition, a clastic rock platform exists in the southeast of the study area. Hydro- carbon source rock and reservoir conditions were preliminarily analyzed based on lithofacies palaeogeography. Sedimentary environments have obvious controls over the development of the resource rocks. With regard to the abundance of organic matter, the hydrocarbon potential of the coastal swamp environment is the best, followed by the basin environment and the carbonate rock platform. The gas reservoir types of the Wujiaping Stage can be classified as conventional and unconventional gas reservoirs, like coal bed gas and shale gas; all of them have well exploration prospects.
基金supported by the marine petroleum exploration project "Study of the quantitative lithofacies,palaeogeography and petroleum predication of Permian in South China" from China Petroleum & Chemical Corporation(YPH08019)the twelfth Five-Year Plan of major national science and technology project " Study on accumulation conditions and favorable exploration area evaluation of marine carbonate rocks in South China"(2011ZX05004-001-004)
文摘Based on the petrological study,according to single factor analysis and multifactor comprehensive mapping method,the quantitative lithofacies palaeogeography of the Upper Permian Changxing Stage of the Middle and Upper Yangtze Region was studied.The Changxing Stage in the Middle and Upper Yangtze Region is mainly composed of carbonate rocks;in addition,clastic and siliceous rocks occur with rare coals and pyroclastic rocks.Lithofacies can be divided into five types,including clastic rock assemblage,clastic rock-limestone assemblage,limestone assemblage,limestone-siliceous rock assemblage,and siliceous rock-clastic rock assemblage.Four fundamental ecological types and five fossil assemblages were recognized in the Changxing Stage.On the basis of the petrological and palaeoecological study,eight single factors were chosen including thickness,content of marine rocks,content of shallow water carbonate rocks,content of bioclasts with limemud matrix,content of bioclasts with sparry cement,distribution of reefs,content of thin bedded siliceous rocks and content of deep water sedimentary rocks.And eight single factor maps and one lithofacies paleogeographic map of the Changxing Stage were compiled.Paleoenvironments from west to east include an erosional area,fluvial plain,clastic platform,carbonate platform and reefs that developed there,slope and basin,low energy organic banks,and high energy organic banks.Sedimentary environments have an obvious control on the development of the source rocks,and the excellent source rocks are developed in the Dalong Formation.Changxing Stage reservoirs should be dominated by the reef and platform surrounding the GuangyuanLiangping Basin rim area,and is the most favorable exploration area of the reef petroleum reservoirs of the Changxing Formation.
基金the National Natural Science Foundation of China (Grant No.49972069), the State Key Laboratory of Southwest Petroleum Institute, and Beijing Institute of Geomechanics. Thanks are due to the academician Guo Lingzhi of the Department of Earth Sciences of
文摘A discussion of collision orogenic deformation has been made for the Middle Yangtze Region. Based on its deformation assemblage orders, three developing stages are classified successively as compression thrust uplift, strike-slip escape rheology and tension extension inversion. The collision orogenesis of the studied region has been divided into three developing periods of initial, chief and late orogeny. Based on the data from Wugong Mts., Jiuling Mts. and Xuefeng Mts.,for each stage, its variation of stress and strain axes, the conversion of joint fractures and their relative tectonic evolution are described, models are plotted and corresponding explanations are made for the rock chronology dating value in the same tectonic period.
基金supported by National Natural Science Foundation of China (Grant Nos. 41502025, U1562213 and 41521061)Chinese Academy of Sciences (Grant No. XDB10010100)+1 种基金the China Geological Survey Project (Grant No. 2016-03019)the "Geobiodiversity Database" and IGCP 653 Project "The onset of the Great Ordovician Biodiversity Event"
文摘Wide distribution of the black shales and diversification of the graptolite fauna in South China during the Late Ordovician resulted from its unique paleogeographic pattern, which was significantly affected by the paleogeographic evolution of the Lower Yangtze region. In the study, 120 Upper Ordovician sections from the Lower Yangtze region were collected, and a unified biostratigraphic framework has been applied to these sections to establish a reliable stratigraphic subdivision and correlation. Under the unified time framework, we delineate the distribution area of each lithostratigraphic unit, outline the boundary between the sea and land, and reconstruct the paleogeographic pattern for each graptolite zone. The result indicates that, with the uplift and expansion of the ‘Jiangnan Oldland' in the beginning of the late Katian, the oldland extended into the Yangtze Sea gradually from south to north, which finally separate the Jiangnan Slope and the Yangtze Platform. Consequently,the longstanding paleogeographic pattern of "platform-slope-basin" in South China was broken. The paleogeographic change led to sedimentary differentiation among the two sides of the ‘Jiangnan Oldland' during the Late Ordovician. This event also led to the closure of the eastern exit of the Upper Yangtze Sea, and formed a semi-closed, limited and stagnant environment for the development of the organic-rich black shales during the Late Ordovician. The major controlling factors of these paleogeographic changes in the Lower Yangtze region were not consistent from the Katian to the Hirnantian. In the late Katian, the sedimentary differentiation between the east and west sides mostly resulted from regional tectonic movement-the Kwangsian Orogeny.However, during the Hirnantian, the whole Yangtze region became shallower, which was mostly influenced by the concentration of the Gondwana ice sheet and the consequent global sea level drop.
基金jointly funded by the National Natural Science Foundation(Nos.U19B6003,U20B6001,9175520021,42002137)Chinese Academy of Sciences(CAS)Strategic Leading Science&Technology Program(No.XDA14000000)。
文摘Based on the analysis of the deformation styles in different tectonic belts of the MiddleUpper Yangtze region,as well as the dissection of typical hydrocarbon reservoirs,this study determined the controlling effects of deformations on the hydrocarbon accumulations,obtaining the following results.The Middle-Upper Yangtze region experienced significant deformations during the Late Indosinian(T_(2)–T_(3)),the Middle Yanshanian(J_(3)–K_(1)),and the Himalayan,and five styles of tectonic deformations mainly occurred,namely superimposed deep burial,uplift,compressional thrusting,multi-layer decollement,and secondary deep burial.The distribution of hydrocarbon reservoirs in the piedmont thrust belts is controlled by the concealed structures on the footwall of the deep nappe.The gentle deformation area in central Sichuan experienced differential uplift,structural-lithologic hydrocarbon reservoirs were formed over a wide area.The eastern Sichuan-western Hunan and Hubei deformation area experienced Jura Mountains-type multi-layer detachment,compressional thrusting,and uplift.In relatively weakly folded and uplifted areas,conventional structural-lithologic hydrocarbon reservoirs have undergone adjustment and re-accumulation,and the shale gas resources are well preserved.In the strongly deformed areas,conventional hydrocarbon reservoirs were destroyed,while unconventional hydrocarbon reservoirs have been partially preserved.The marine strata in the Jianghan Basin experienced compression,thrusting,and denudation in the early stage and secondary deep burial in the late stage.Consequently,the unconventional gas resources have been partially preserved in these strata.Secondary hydrocarbon generation become favorable for conventional hydrocarbon accumulations in the marine strata.
基金National Natural Science Foundation of China, No.40671077 No.40571058
文摘In the era of economic globalization,the concept of Economic Polarized Area comes into being as an effective vehicle to agglomerate the economic elements and sustain the economic lifeline of the region. Based on the region's specific development mode and construction form the concept is working in such a way that it will contribute to guide the economic development of the country and will play an important role in competing with other regions or countries in the world. Due to the high speed development of the last 30 years,the Yangtze Delta Region starts to show the features of Economic Polarized Area. But,compared with other world-class Economic Polarized Areas,the economic strength and the ability of the Yangtze Delta Region to drive the country's economic development is still very low and the competitive power is still very limited. Expanding the boundaries of the Economic Polarized Area of the Yangtze Delta may extend the economic hinterland of the core area of the Yangtze Delta Region,will lighten the pressures from the limited resource and promote the rationalization of the industrial structure in the Yangtze Delta Region's core area. With regard to the reasonable boundaries of the Yangtze Delta Region,there are different opinions and controversial arguments in political and academic circles. Starting from the idea of increasing the competitive power and improving the economic strength of the Yangtze Delta Region,the paper firstly is discussing the requirements to become a world-class Economic Polarized Area. In a second step an analysis of functional complementation and economic collaboration between the cities of an "extended" Yangtze Delta Region has been carried out by in particular considering the feasibility of integrating these "newly included" cities. The final result of the study is,that the Region should be expanded from the number of 16 cities to 37 cities,and the appended cities should be divided up into two categories:Wenzhou,Jinhua,Yancheng,Huaian,Maanshan,Wuhu,Tongling,Chaohu,Hefei,Chuzhou,Xuancheng should be taken as Preferred Extending Area,and Suqian,Xuzhou,Lianyungang,Lishui,Quzhou,Chizhou,Anqing,Bengbu,Huangshan,Suzhou (Anhui Province) should be taken as Retained Qualification Area.
基金supported by the National Basic Research Program of China (973 Program,Grant No. 2007CB411507 and Grant No.2010CB951704)
文摘This paper studies the relationship between net primary productivity (NPP) and annual average air temperature (GT) at 0cm above ground in permafrost regions by using revised Chikugo NPP model,cubic spline interpolating functions,and non-linear regression methods.The source regions of the Yangtze and Yellow Rivers were selected as the research areas.Results illustrate that:(1) There is significant non-linear relationship between NPP and GT in various typical years;(2) The maximum value of NPP is 6.17,5.87,7.73,and 5.41 DM·t·hm-2 ·a-1 respectively,and the corresponding GT is 7.1,10.0,21.2,and 8.9 o C respectively in 1980,1990,2000 and 2007;(3) In 1980,the sensitivity of NPP to GT is higher than in 1990,2000 and 2007.This tendency shows that the NPP presents change from fluctuation to an adaptation process over time;(4) During 1980~2007,the accumulated NPP was reduced to 8.05,and the corresponding carrying capacity of theoretical livestock reduced by 11%;(5) The shape of the demonstration region of ecological compensation system,livelihood support system,and science appraisal system in the source regions of Yangtze and Yellow Rivers are an important research for increasing the adaptation capacity and balancing protection and development.